Synthesis 2017; 49(24): 5351-5356
DOI: 10.1055/s-0036-1588553
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of the Tripeptide Antibiotic Resormycin

Rahul D. Kaduskar
Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy   Email: loana.musso@unimi.it
,
Andrea Pinto
Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy   Email: loana.musso@unimi.it
Department of Pharmaceutical Sciences (DISFARM), Università degli Studi di Milano, Via Mangiagalli 25, 20133 Milano, Italy
,
Leonardo Scaglioni
Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy   Email: loana.musso@unimi.it
,
Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy   Email: loana.musso@unimi.it
,
Sabrina Dallavalle
Department of Food, Environmental and Nutritional Sciences, Division of Chemistry and Molecular Biology, Università degli Studi di Milano, Via Celoria 2, 20133 Milano, Italy   Email: loana.musso@unimi.it
› Author Affiliations
Further Information

Publication History

Received: 08 June 2017

Accepted after revision: 26 July 2017

Publication Date:
28 August 2017 (eFirst)

Abstract

A short and efficient synthesis of resormycin, a metabolite of Streptomyces platensis MJ953-SF5 with herbicidal and antifungal activity, is described. The key step in our synthetic approach is a late-stage stereospecific dehydration of a β-hydroxy amino acid to install the Z-olefin. Because of the modular nature of the synthesis, access to analogues for biological evaluation is readily available.

Supporting Information

 
  • References

  • 1 Newman DJ. Cragg GM. J. Nat. Prod. 2016; 79: 629
  • 2 Igarashi M. Kinoshita N. Ikeda T. Kameda M. Hamada M. Takeuchi T. J. Antibiot. 1997; 50: 1020
  • 3 Yamazaki Y. Someno T. Igarashi M. Kinoshita N. Hatano M. Kawada M. Momose I. Nomoto A. J. Antibiot. 2015; 68: 279
  • 4 Abe H. Yamazaki Y. Sakashita C. Momose I. Watanabe T. Shibasaki M. Chem. Pharm. Bull. 2016; 64: 982
  • 5 Yokokawa F. Shioiri T. Tetrahedron Lett. 2002; 43: 8679
  • 6 Shibata N. Baldwin JE. Jacobs A. Wood ME. Tetrahedron 1996; 52: 12839
  • 7 Mahajan T. Kumar L. Dwivedi K. Agarwal DD. Ind. Eng. Chem. Res. 2012; 51: 3881
  • 8 Yajima A. Urao S. Yoshioka Y. Abe N. Katsuta R. Nukada T. Tetrahedron Lett. 2013; 54: 4986
  • 9 Corcoran JP. T. Kalindjian SB. Borthwick AD. Adams DR. Brown JT. Taddei DM. A. Shiers JJ. WO 2011027106, 2011
  • 10 Baryza JL. Beckwith RE. J. Bowman K. Byers C. Fazal T. Gamber GG. Lee CC. Tichkule RB. Vageese C. Wang S. West L. Zabawa T. Zhao J. WO 2014136086, 2014
  • 11 Benoit MR. Lienard LE. Horsfall MG. Frere J. Schofield JC. Bioorg. Med. Chem. Lett. 2007; 17: 964
  • 12 Dhavan AA. Kaduskar RD. Musso L. Scaglioni L. Martino PA. Dallavalle S. Beilstein J. Org. Chem. 2016; 12: 1624
  • 13 Chen B. Nie J. Singh M. Pike VW. Kirk KL. A. J. Fluorine Chem. 1995; 75: 93
  • 14 Arhart RJ. Martin JC. J. Am. Chem. Soc. 1972; 94: 5003
  • 15 Yokokawa F. Shioiri T. Tetrahedron Lett. 2002; 43: 8673
  • 16 Hayakawa Y. Kato H. Uchiyama M. Kajino H. Noyori R. J. Org. Chem. 1986; 51: 2400
  • 17 Dangles O. Guibe F. Balavoine G. Lavielle S. Marquet A. J. Org. Chem. 1987; 52: 4984