Synlett 2017; 28(20): 2936-2940
DOI: 10.1055/s-0036-1588563
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Tetraarylmethanes by the Triflic Acid-Promoted Formal Cross-Dehydrogenative Coupling of Triarylmethanes with Arenes

Masakazu Nambo*a, Jacky C.-H. Yima, Kevin G. Fowlera, Cathleen M. Crudden*a, b
  • aInstitute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan   Email: mnambo@itbm.nagoya-u.ac.jp
  • bQueen’s University, Department of Chemistry, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada   Email: cruddenc@chem.queensu.ca
This work was supported by KAKENHI from JSPS (26810056 and 17K17805 to M.N.). M.N. thanks the Chugai Pharmaceutical Company Award in Synthetic Organic Chemistry, Japan. J.C.-H.Y. is a recipient of a JSPS postdoctoral fellowship for research in Japan (16F16749). We also thank JSPS and NU for funding this research through The World Premier International Research Center Initiative (WPI) program
Further Information

Publication History

Received: 15 June 2017

Accepted after revision: 19 July 2017

Publication Date:
26 September 2017 (eFirst)

Dedicated to Professor Victor Snieckus, colleague, mentor, and friend on the occasion of his 80th birthday.

Abstract

The formal cross-dehydrogenative coupling of triarylmethanes with arenes promoted by triflic acid and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone is described. This method provides a variety of tetraarylmethane derivatives in good to excellent yields from triarylmethanes that can be readily prepared by our previous methods. Control experiments suggest a possible catalytic cycle involving the generation of a trityl cation intermediate followed by nucleophilic addition of the arene.

Supporting Information

 
  • References and Notes


    • For reviews, see:
    • 1a Duxbury DF. Chem. Rev. 1993; 93: 381
    • 1b Ma JC. Dougherty DA. Chem. Rev. 1997; 97: 1303
    • 1c Shchepinov MS. Korshun VA. Chem. Soc. Rev. 2003; 32: 170
    • 1d Nair V. Thomas S. Mathew SC. Abhilash KG. Tetrahedron 2006; 62: 6731

    • For selected examples, see:
    • 1e Panda G. Parai MK. Das SK. Shagufta Sinha M. Chaturvedi V. Srivastava AK. Manju YS. Gaikwad AN. Sinha S. Eur. J. Med. Chem. 2007; 42: 410
    • 1f Rueping M. Nachtsheim BJ. ­Beilstein J. Org. Chem. 2010; 6: 6
    • 1g Vernekar SK. V. Liu Z. Nagy E. Miller L. Kirby KA. Wilson DJ. Kankanala J. Sarafianos SG. Parniak MA. Wang Z. J. Med. Chem. 2015; 58: 651

      For recent advances for the synthesis of polyarylated alkanes by transition-metal catalysis, see:
    • 2a Harris MR. Hanna LE. Greene MA. Moore CE. Jarvo ER. J. Am. Chem. Soc. 2013; 135: 3303
    • 2b Tellis JC. Primer DN. Molander GA. Science 2014; 345: 433
    • 2c Mondal S. Panda G. RSC Adv. 2014; 4: 28317
    • 2d Nambo M. Crudden CM. ACS Catal. 2015; 5: 4734
    • 2e Zhou Q. Cobb KM. Tan T. Watson MP. J. Am. Chem. Soc. 2016; 138: 12057
    • 3a Witten B. Reid EE. Org. Synth. Coll. Vol. IV . Wiley; London; 1963: 47
    • 3b Gibson HW. Lee S.-H. Engen PT. Lecavalier P. Sze J. Shen YX. Bheda M. J. Org. Chem. 1993; 58: 3748
    • 3c Choudhury J. Podder S. Roy S. J. Am. Chem. Soc. 2005; 127: 6162
    • 3d McCubbin JA. Krokhin OV. Tetrahedron Lett. 2010; 51: 2447
    • 3e Sato Y. Aoyama T. Takido T. Kodomari M. Tetrahedron 2012; 68: 7077
    • 4a Neugebauer FA. Fischer H. Bernhardt R. Chem. Ber. 1976; 109: 2389
    • 4b Grimm M. Kirste B. Kurrek H. Angew. Chem. Int. Ed. Engl. 1986; 25: 1097
    • 4c Su D. Menger FM. Tetrahedron Lett. 1997; 38: 1485
    • 4d Zimmermann TJ. Müller TJ. J. ­Synthesis 2002; 1157
    • 4e Watanabe N. Matsugi A. Nakao K. Ichikawa Y. Kotsuki H. Synlett 2014; 25: 438
    • 5a Schoepfle CS. Trepp SG. J. Am. Chem. Soc. 1936; 58: 791
    • 5b Reetz MT. Wenderoth B. Peter R. Steinbach R. Westermann J. J. Chem. Soc., Chem. Commun. 1980; 1202
    • 5c Matsumoto K. Kannami M. Oda M. Tetrahedron Lett. 2003; 44: 2861
    • 5d Kurata H. Oki Y. Matsumoto K. Kawase T. Oda M. Chem. Lett. 2005; 34: 910
  • 6 Niwa T. Yorimitsu H. Oshima K. Org. Lett. 2007; 9: 2373
  • 7 Zhang S. Kim B.-S. Wu C. Mao J. Walsh PJ. Nat. Commun. 2017; 8: 14641
  • 8 Gartia Y. Biswas A. Stadler M. Nasini UB. Ghosh A. J. Mol. Catal. A: Chem. 2012; 363–364: 322
    • 9a Nambo M. Crudden CM. Angew. Chem. Int. Ed. 2014; 53: 742
    • 9b Nambo M. Yar M. Smith JD. Crudden CM. Org. Lett. 2015; 17: 50
    • 9c Nambo M. Ariki ZT. Canseco-Gonzalez D. Beattie DD. Crudden CM. Org. Lett. 2016; 18: 2339
    • 9d Nambo M. Keske EC. Rygus JP. G. Yim JC.-H. Crudden CM. ACS Catal. 2017; 7: 1108

      For reviews, see:
    • 10a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 10b Scheuermann CJ. Chem. Asian J. 2010; 5: 436
    • 10c Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 10d Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138
    • 10e Gini A. Brandhofer T. Mancheño OG. Org. Biomol. Chem. 2017; 15: 1294

      For examples of reactions of trityl cation with arenes, see:
    • 11a Sugihara Y. Saito J. Murata I. Angew. Chem., Int. Ed. Engl. 1991; 30: 1174
    • 11b Kusuhara N. Sugano Y. Takagi H. Miyake H. Yamamura K. Chem. Commun. 1997; 1951
    • 11c Lv J. Zhang Q. Zhong X. Luo S. J. Am. Chem. Soc. 2015; 137: 15576

      For recent examples of cross-dehydrogenative coupling using DDQ, see:
    • 12a Li Y.-Z. Li B.-J. Lu X.-Y. Lin S. Shi Z.-J. Angew. Chem. Int. Ed. 2009; 48: 3817
    • 12b Liu H. Cao L. Sun J. Fossey JS. Deng W.-P. Chem. Commun. 2012; 48: 2674
    • 12c Ma Y. Zhang D. Yan Z. Wang M. Bian C. Gao X. Bunel EE. Lei A. Org. Lett. 2015; 17: 2174
    • 12d Guo S. Li Y. Wang Y. Guo X. Meng X. Chen B. Adv. Synth. Catal. 2015; 357: 950

      In the reaction of 1i with 2g, we did not observe the formation of the corresponding triarylmethanol; however, the p-quinone methide 6 (Figure [2]) was detected by GC/MS. The formation of such p-quinone methides from p-methoxy-substituted triarylmethanol derivatives under acidic conditions through O-demethylation has been reported, see:
    • 13a Levine R. Sommers JR. J. Org. Chem. 1974; 39: 3559
    • 13b Wada M. Watanabe T. Natsume S. Mishima H. Kirishima K. Erabi T. Bull. Chem. Soc. Jpn. 1995; 68: 3233
    • 13c Taljaard B. Taljaard JH. Imrie C. Caira MR. Eur. J. Org. Chem. 2005; 2607 ; Thus a less reactive trityl cation could decompose to give a p-quinone methide before coupling with the arene
  • 14 CCDC 1553011 and 1553012 contains the supplementary crystallographic data for compounds 3ag and 3ah, respectively. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 15a Zhai L. Shukla R. Rathore R. Org. Lett. 2009; 11: 3474
    • 15b Zhai L. Shukla R. Wadumethrige SH. Rathore R. J. Org. Chem. 2010; 75: 4748
    • 16a Scholl R. Mansfeld J. Ber. Dtsch. Chem. Ges. 1910; 43: 1734
    • 16b Kovacic P. Jones MB. Chem. Rev. 1987; 87: 357
    • 16c Grzybowski M. Skonieczny K. Butenschön H. Gryko DT. Angew. Chem. Int. Ed. 2013; 52: 9900
    • 17a Ohta T. Shudo K. Okamoto T. Tetrahedron Lett. 1983; 24: 71

    • This fluorene-formation process might be similar to a Nazrov cyclization:
    • 17b Spencer WT. III. Vaidya T. Frontier AJ. Eur. J. Org. Chem. 2013; 3621
  • 18 1-Methoxy-4-tritylbenzene (3aa); Typical Procedure A 10-mL sealable reaction tube equipped with a magnetic stirring bar and a septum was evacuated, flame-dried under vacuum, cooled to r.t., and backfilled with argon. The tube was then charged with Ph3CH (1a; 24.4 mg, 0.1 mmol) and DDQ (45.4 mg, 0.2 mmol, 2 equiv) under a constant stream of argon. The tub was evacuated for 5 min and refilled with argon. This cycle was repeated twice more. DCE (0.3 mL), TfOH (0.9 μL, 0.01 mmol, 10 mol%), and anisole 2a (51 μL, 0.5 mmol, 5 equiv) were added, and the vessel was sealed. The mixture was stirred at 100 °C for 6 h then cooled to r.t. EtOAc (~5 mL) was added, and the solution was passed through a pad of Celite with copious washings with EtOAc. The solvent was evaporated under reduced pressure to give a crude product that was purified by preparative TLC (hexane–EtOAc, 50:1) to give a white solid; yield: 25.9 mg (74%). 1H NMR (400 MHz, CDCl3): δ = 3.78 (s, 3 H), 6.80 (dm, J = 9.2 Hz, 2 H), 6.80 (dm, J = 9.2 Hz, 2 H), 7.16–7.26 (m, 15 H). 13C NMR (150 MHz, CDCl3): δ = 55.2, 64.3, 112.7, 125.8, 127.4, 131.1, 132.2, 139.0, 147.0, 157.5. HRMS (DART): m/z calcd for C26H22O: 350.1671; found: 350.1663.