Synlett 2018; 29(01): 106-110
DOI: 10.1055/s-0036-1588564
letter
© Georg Thieme Verlag Stuttgart · New York

New Efficient Synthesis of 1,2,4-Trisubstituted Furans by a ­Sequential Passerini/Wittig/Isomerization Reaction Starting from Baylis–Hillman β-Bromo Aldehydes

Zhi-Lin Ren
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China   Email: mwding@mail.ccnu.edu.cn
,
Mei Sun
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China   Email: mwding@mail.ccnu.edu.cn
,
Zhi-Rong Guan
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China   Email: mwding@mail.ccnu.edu.cn
,
Ming-Wu Ding*
Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Central China Normal University, Wuhan 430079, P. R. of China   Email: mwding@mail.ccnu.edu.cn
› Author Affiliations
We gratefully acknowledge the financial support of this work by the National Natural Science Foundation of China (No. 21572075) and the 111 Project B17019.
Further Information

Publication History

Received: 12 June 2017

Accepted after revision: 26 July 2017

Publication Date:
25 August 2017 (eFirst)

Abstract

A new and efficient synthesis of 1,2,4-trisubstituted furans from a Baylis–Hillman β-bromo aldehyde, an acid, an isocyanide, and methyl(diphenyl)phosphine, by a sequential Passerini condensation, Wittig reaction, and isomerization in the presence of triethylamine is reported.

Supporting Information

 
  • References and Notes

    • 1a Rotstein BH. Zaretsky S. Rai V. Yudin AK. Chem. Rev. 2014; 114: 8323
    • 1b Dömling A. Wang W. Wang K. Chem. Rev. 2012; 112: 3083
    • 2a Zhang J. Lin S.-X. Cheng D.-J. Liu X.-Y. Tan B. J. Am. Chem. Soc. 2015; 137: 14039
    • 2b Ponra S. Nyadanu A. El Kaïm L. Grimaud L. Vitale MR. Org. Lett. 2016; 18: 4060
    • 2c Yugandhar D. Kuriakose S. Nanubolu JB. Srivastava AK. Org. Lett. 2016; 18: 1040
    • 2d Miranda LD. Hernández-Vázquez E. J. Org. Chem. 2015; 80: 10611
    • 2e Wu R. Gao S. Chen X. Yang G. Pan L. Hu G. Jia P. Zhong W. Yu C. Eur. J. Org. Chem. 2014; 3379
    • 3a Ma G.-H. Jiang B. Tu X.-J. Ning Y. Tu S.-J. Li G. Org. Lett. 2014; 16: 4504
    • 3b De Moliner F. Bigatti M. Banfi L. Riva R. Basso A. Org. Lett. 2014; 16: 2280
    • 3c Alcaide B. Almendros P. Aragoncillo C. Callejo R. Ruiz MP. J. Org. Chem. 2013; 78: 10154
    • 3d Moni L. Banfi L. Basso A. Carcone L. Rasparini M. Riva R. J. Org. Chem. 2015; 80: 3411
    • 3e Martinand-Lurin E. El Kaïm L. Grimaud L. Tetrahedron Lett. 2014; 55: 5144
    • 3f Cordier M. Dos Santos A. El Kaïm L. Narboni N. Chem. Commun. 2015; 51: 6411
    • 3g Martinand-Lurin E. Dos Santos A. El Kaïm L. Grimaud L. Retailleau P. Chem. Commun. 2014; 50: 2214
  • 4 Alnabulsi S. Santina E. Russo I. Hussein B. Kadirvel M. Chadwick A. Bichenkova EV. Bryce RA. Nolan K. Demonacos C. Stratford IJ. Freeman S. Eur. J. Med. Chem. 2016; 111: 33
  • 5 Ansari MF. Siddiqui SM. Ahmad K. Avecilla F. Dharavath S. Gourinath S. Azam A. Eur. J. Med. Chem. 2016; 124: 393
  • 6 Yan L. Yan C. Qian K. Su H. Kofsky-Wofford SA. Lee W.-C. Zhao X. Ho M.-C. Ivanov I. Zheng YG. J. Med. Chem. 2014; 57: 2611
  • 7 Vitale P. Tacconelli S. Perrone MG. Malerba P. Simone L. Scilimati A. Lavecchia A. Dovizio M. Marcantoni E. Bruno A. Patrignani P. J. Med. Chem. 2013; 56: 4277
    • 8a Khaghaninejad S. Heravi MM. Adv. Heterocycl. Chem. 2014; 111: 95
    • 8b Minetto G. Raveglia LF. Sega A. Taddei M. Eur. J. Org. Chem. 2005; 5277
    • 9a Feist F. Ber. Dtsch. Chem. Ges. 1902; 35: 1537
    • 9b Calter MA. Zhu C. Lachicotte RJ. Org. Lett. 2002; 4: 209
    • 10a Zhou Q.-F. Zhang K. Cai L. Kwon O. Org. Lett. 2016; 18: 2954
    • 10b Mal K. Das I. J. Org. Chem. 2016; 81: 932
    • 10c Yang Y. Ni F. Shu W.-M. Wu A.-X. Tetrahedron 2014; 70: 6733
    • 11a Manna S. Antonchick AP. Org. Lett. 2015; 17: 4300
    • 11b Yu J.-T. Shi B. Peng H. Sun S. Chu H. Jiang Y. Cheng J. Org. Lett. 2015; 17: 3643
    • 11c Lu B. Wu J. Yoshikai N. J. Am. Chem. Soc. 2014; 136: 11598
    • 11d Rajesh M. Puri S. Kant R. Reddy MS. Org. Lett. 2016; 18: 4332
    • 11e Shiroodi RK. Koleda O. Gevorgyan V. J. Am. Chem. Soc. 2014; 136: 13146
    • 11f Hosseyni S. Su Y. Shi X. Org. Lett. 2015; 17: 6010
    • 11g Lee E. Bang J. Kwon J. Yu C.-M. J. Org. Chem. 2015; 80: 10359
    • 11h Li M. Kong X.-J. Wen L.-R. J. Org. Chem. 2015; 80: 11999
    • 11i Matsui K. Shibuya M. Yamamoto Y. ACS Catal. 2015; 5: 6468
    • 11j Lin M.-H. Kuo C.-K. Huang Y.-C. Tsai Y.-T. Tsai C.-H. Liang K.-Y. Li Y.-S. Chuang T.-H. Tetrahedron 2014; 70: 5513
    • 12a Chen Z. Nieves-Quinones Y. Waas JR. Singleton DA. J. Am. Chem. Soc. 2014; 136: 13122
    • 12b Ma J. Yuan Z.-Z. Kong X.-W. Wang H. Li Y.-M. Xiao H. Zhao G. Org. Lett. 2016; 18: 1450
    • 12c Bruckner S. Bilitewski U. Schobert R. Org. Lett. 2016; 18: 1136
    • 12d Chen L. Du Y. Zeng X.-P. Shi T.-D. Zhou F. Zhou J. Org. Lett. 2015; 17: 1557
    • 13a Zhang K. Cai L. Jiang X. Garcia-Garibay MA. Kwon O. J. Am. Chem. Soc. 2015; 137: 11258
    • 13b Lee C.-J. Chang T.-H. Yu J.-K. Reddy GM. Hsiao M.-Y. Lin W. Org. Lett. 2016; 18: 3758
    • 13c Wang J. Yao J. Wang H. Chen H. Dong J. Zhou H. J. Org. Chem. 2016; 81: 5250
    • 13d Saleh N. Voituriez A. J. Org. Chem. 2016; 81: 4371
    • 14a Beck B. Magnin-Lachaux M. Herdtweck E. Dömling A. Org. Lett. 2001; 3: 2875
    • 14b Beck B. Picard A. Herdtweck E. Dömling A. Org. Lett. 2004; 6: 39
    • 15a Wang L. Ren Z.-L. Ding M.-W. J. Org. Chem. 2015; 80: 641
    • 15b Wang L. Guan Z.-R. Ding M.-W. Org. Biomol. Chem. 2016; 14: 2413
    • 15c Duan Z. Gao Y. Yuan D. Ding M.-W. Synlett 2015; 26: 2598
    • 15d Yan Y.-M. Rao Y. Ding M.-W. J. Org. Chem. 2017; 82: 2772
    • 16a Tang X. Zhang B. He Z. Gao R. He Z. Adv. Synth. Catal. 2007; 349: 2007
    • 16b Reddy MV. R. Rudd MT. Ramachandran PV. J. Org. Chem. 2002; 67: 5382
  • 17 1-(Aminocarbonyl)-3-aryl-2-(bromomethyl)prop-2-en-1-yl Esters 4; General Procedure The appropriate acid 2 (2 mmol) and isocyanide 3 (2 mmol) were added to a solution of the Baylis–Hillman β-bromo aldehyde 1 (2 mmol) in CH2Cl2 (4 mL), and the mixture was stirred at r.t. for 3 d until the reaction was complete (TLC). The solvent was removed under reduced pressure, and the residue was purified by flash chromatography [silica gel, EtOAc/PE (1:10)]. (2Z)-2-(Bromomethyl)-1-[(tert-butylamino)carbonyl]-3-(4-nitrophenyl)prop-2-en-1-yl Benzoate(4a) White solid; yield: 664 mg (70%); mp 118–120 °C. 1H NMR (600 MHz, CDCl3): δ = 8.24 (d, J = 7.2 Hz, 2 H, Ar-H), 8.13 (d, J = 5.4 Hz, 2 H, Ar-H), 7.62–7.51 (m, 5 H, Ar-H), 7.07 (s, 1 H, =CH), 6.27 (s, 1 H, NH), 6.03 (s, 1 H, CH), 4.26 (d, J = 10.8 Hz, 1 H, CH2 a), 4.16 (d, J = 10.2 Hz, 1 H, CH2 b), 1.41 (s, 9 H, 3CH3). 13C NMR (150 MHz, CDCl3): δ = 166.0, 164.5, 147.1, 141.5, 135.4, 133.9, 133.3, 129.8, 129.6, 128.7, 123.8, 75.8, 51.8, 28.5, 27.1. HRMS: m/z [M + H]+ calcd for C22H24BrN2O5: 475.0863; found: 475.0860.
  • 18 CCDC 1545270 contains the supplementary crystallographic data for compound 6a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 19 Trang TT. T. Peshkov AA. Jacobs J. Van Meervelt L. Peshkov VA. Van der Eycken EV. Tetrahedron Lett. 2015; 56: 2882
  • 20 Lowry TH. Richardson KS. Mechanism and Theory in Organic Chemistry . Harper & Row; New York: 1987. 3rd ed. 486
  • 21 Furans 5; General Procedure In an oven-dried flask, bromide 4 (1 mmol) and Ph2MeP (0.20 g, 1 mmol) were dissolved in toluene (5 mL) at r.t. After two hours, the white phosphonium salt solid 11 formed. Without isolation of the phosphonium salt intermediate, NEt3 (0.20 g, 2 mmol) was added and the mixture was stirred at reflux for 3–12 h until the reaction was complete (TLC). The solution was then concentrated under reduced pressure and the residue was purified by flash chromatography [silica gel, EtOAc/PE (1:12 to 1:1)]. N-(tert-Butyl)-3-(4-nitrobenzyl)-5-phenyl-2-furamide (5a) Light-yellow oil; yield: 309 mg (82%). 1H NMR (600 MHz, CDCl3): δ = 8.04 (d, J = 8.4 Hz, 2 H, Ar-H), 7.53 (d, J = 7.2 Hz, 2 H, Ar-H), 7.39–7.23 (m, 5 H, Ar-H), 6.37 (s, 1 H, furan-4-H), 6.21 (s, 1 H, NH), 4.31 (s, 2 H, CH2), 1.43 (s, 9 H, 3CH3). 13C NMR (150 MHz, CDCl3): δ = 158.8, 153.5, 147.9, 146.4, 142.0, 130.1, 129.5, 129.2, 128.7, 128.6, 124.3, 123.6, 109.0, 51.4, 31.3, 29.0. HRMS: m/z [M + H]+ calcd for C22H23N2O4: 379.1652; found: 379.1653.