Synlett 2018; 29(01): 94-98
DOI: 10.1055/s-0036-1588565
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Benzamide Derivatives by the Reaction of Arenes and Isocyanides through a C–H Bond Activation Strategy

Mehdi Khalaj*
Young Researchers and Elite Club, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
,
Mahboubeh Taherkhani
Young Researchers and Elite Club, Takestan Branch, Islamic Azad University, Takestan, Iran   Email: khalaj_mehdi@yahoo.com
,
Seyed Mahmoud Mousavi-Safavi
Young Researchers and Elite Club, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
,
Jafar Akbari
Young Researchers and Elite Club, Buinzahra Branch, Islamic Azad University, Buinzahra, Iran
› Author Affiliations
Further Information

Publication History

Received: 10 July 2017

Accepted after revision: 19 August 2017

Publication Date:
15 September 2017 (eFirst)

Abstract

A carbon–carbon bond formation reaction between isocyanides and benzene derivatives is reported. In contrast to traditional cross-coupling reactions, which require aryl halides or pseudohalides, we use a palladium catalyst to generate the aryl–palladium through C–H bond activation of arenes. This method offers an attractive approach to a range of benzamides from readily accessible benzene derivatives.

 
  • References

  • 1 Shang R. Ilies L. Nakamura E. Chem. Rev. 2017; 117: 9086
  • 2 Labinger JA. Bercaw JE. Nature 2002; 417: 507
  • 3 Wang X. Gensch T. Lerchen A. Daniliuc CG. Glorius F. J. Am. Chem. Soc. 2017; 139: 6506
  • 4 Godula K. Sames D. Science 2006; 312: 67
  • 5 Izawa Y. Pun D. Stahl SS. Science 2011; 333: 209
  • 6 Upadhyay NS. Thorat VH. Sato R. Annamalai P. Chuang SH. Cheng CH. Green Chem. 2017; 19: 3219
  • 7 He J. Wasa M. Chan KS. L. Shao Q. Yu JQ. Chem. Rev. 2017; 117: 8754
  • 8 Jia C. Piao D. Oyamada J. Lu W. Kitamura T. Fujiwara Y. Science 2000; 287: 1992
  • 9 Zhang YH. Shi BF. Yu JQ. J. Am. Chem. Soc. 2009; 131: 5027
  • 10 Li R. Jiang L. Lu W. Organometallics 2006; 25: 5973
  • 11 Wu J. Hoang KL. M. Leow ML. Liu XW. Org. Chem. Front. 2015; 2: 502
  • 12 Curto JM. Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 18
  • 13 Liu H. Shi G. Pan S. Jiang Y. Zhang Y. Org. Lett. 2013; 15: 4098
  • 14 Stuart DR. Fagnou K. Science 2007; 316: 1172
  • 15 Huang L. Guo H. Pan L. Xie C. Eur. J. Org. Chem. 2013; 6027
  • 16 Jiang H. Liu B. Li Y. Wang A. Huang H. Org. Lett. 2011; 13: 1028
  • 17 Yavari I. Ghazanfarpour-Darjani M. Bayat MJ. Tetrahedron Lett. 2014; 55: 4981
  • 18 Li Y. Cao J. Zhu Q. Zhang X. Shi G. Russ. J. Gen. Chem. 2016; 86: 668
  • 19 Lu F. Chen Z. Li Z. Wang X. Peng X. Li C. Fang L. Liu D. Gao M. Lei A. Org. Lett. 2017; 19: 3954
  • 20 Wu J. Hoang KL. M. Leow ML. Liu XW. Org. Chem. Front. 2015; 2: 502
  • 21 Giri R. Liang J. Lei JG. Li JJ. Wang DH. Chen X. Naggar IC. Guo CY. Foxman BM. Yu JQ. Angew. Chem. Int. Ed. 2005; 44: 7420
  • 22 Fujiwara Y. Takaki K. Taniguchi Y. Synlett 1996; 591
  • 23 Brainard MW. Nutt WR. Lee TR. Whitesides GM. Organometallics 1998; 7: 2379
  • 24 Vlaar T. Orru RV. A. Maes BU. W. Ruijter E. J. Org. Chem. 2013; 78: 10469
  • 25 Yang F. Song F. Li W. Lan J. You J. RSC Adv. 2013; 3: 9649
  • 26 Typical procedure for the preparation of 3 Pd(OAc)2 (10 mol%), PivOH (0.5 mmol), (NH4)2S2O8 (1.5 mmol), arene (5.0 mmol), TFA (1.0 mL), and diglyme (3.0 mL) were added to a test tube. The mixture was then evacuated and flushed with argon (3 times) and stirred for 30 min at 25 °C. Afterwards, the isocyanide (1.0 mmol) was added by microsyringe. The reaction mixture was then stirred at 110 °C for 28 h and then allowed to cool to room temperature. The crude reaction mixture was diluted with H2O (10 mL) and stirred for 30 min, followed by addition of EtOAc (5 mL) and a saturated NaHCO3 solution (3 mL). The mixture was stirred for an additional 30 min and the two layers were separated. The aqueous layer was extracted with EtOAc (3 × 10 mL). The combined organic layers were dried with MgSO4, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel, hexane/EtOAc 3:1) to give the desired product. The spectroscopic data of all known compounds were satisfactory and consistent with those reported in the literature.16–18 tert-Butyl benzoylglycinate (3k) White solid. M.p.: 72–74 °C. Yield: 0.19 g (80%). IR (KBr) (νmax, cm–1): 3245, 3073, 2928, 1734, 1649, 1538, 1332, 1152. 1H NMR (500.1 MHz, CDCl3): δ = 1.67 (s, 9 H, 3 CH3), 4.32 (d, 3 J = 6.1 Hz, 2 H, CH2), 7.55–7.61 (m, 3 H, 3 CH), 7.97 (d, 3 J = 6.6 Hz, 2 H, 2 CH), 8.35 (br d, 3 J = 6.1 Hz, 1 H, NH) ppm. 13C NMR (125.7 MHz, CDCl3): δ = 32.1 (3 CH3), 46.9 (CH2), 87.0 (C), 128.9 (2 CH), 129.6 (2 CH), 131.8 (CH), 136.5 (C), 165.1 (CH), 167.3 (C) ppm. MS: m/z (%) = 235 ([M]+, 5), 175 (39), 105 (100), 77 (68), 57 (87). Anal. Calcd for C13H17NO3 (235.28): C, 66.36; H, 7.28; N, 5.95. Found: C, 66.70; H, 7.42; N, 6.13. tert-Butyl (4-methoxybenzoyl)glycinate (3l) Colorless solid. M.p.: 96–98 °C. Yield: 0.24 g (89%). IR (KBr) (νmax, cm–1): 3355, 3034, 2979, 1731, 1635, 1312, 1176. 1H NMR (500.1 MHz, CDCl3): δ = 1.63 (s, 9 H, 3 CH3), 3.79 (s, 3 H, OCH3), 4.26 (d, 3 J = 6.3 Hz, 2 H, CH2), 7.06 (d, 3 J = 6.8 Hz, 2 H, 2 CH), 7.79 (d, 3 J = 6.8 Hz, 2 H, 2 CH), 8.49 (br d, 3 J = 6.3 Hz, 1 H, NH) ppm. 13C NMR (125.7 MHz, CDCl3): δ = 34.2 (3 CH3), 46.1 (CH2), 57.0 (OCH3), 85.1 (C), 117.1 (2 CH), 128.2 (C), 130.1 (2 CH), 162.1 (C), 165.6 (CH), 168.0 (C) ppm. MS: m/z (%) = 265 ([M]+, 4), 208 (31), 135 (100), 107 (63), 74 (53), 57 (81). Anal. Calcd for C14H19NO4 (265.31): C, 63.38; H, 7.22; N, 5.28. Found: C, 63.61; H, 7.39; N, 5.49. tert-Butyl (2,4,6-trimethoxybenzoyl)glycinate (3m) Pale yellow solid. M.p.: 156–158 °C. Yield: 0.32 g (98%). IR (KBr) (νmax, cm–1): 3245, 3073, 2928, 1733, 1653, 1538, 1332, 1152. 1H NMR (500.1 MHz, CDCl3): δ = 1.57 (s, 9 H, 3 CH3), 3.78 (s, 3 H, OCH3), 3.83 (s, 6 H, 2 OCH3), 4.24 (d, 3 J = 5.8 Hz, 2 H, CH2), 6.36 (s, 2 H, 2 CH), 8.28 (br d, 3 J = 5.8 Hz, 1 H, NH) ppm. 13C NMR (125.7 MHz, CDCl3): δ = 33.1 (3 CH3), 46.4 (CH2), 56.2 (OCH3), 57.4 (2 OCH3), 83.6 (C), 97.8 (2 CH), 118.6 (C), 158.9 (2 C), 161.5 (C), 165.0 (CH), 167.6 (C) ppm. MS: m/z (%) = 325 ([M]+, 13), 268 (24), 195 (100), 167 (65), 131 (56), 57 (87). Anal. Calcd for C16H23NO6 (325.36): C, 59.07; H, 7.11; N, 4.31. Found: C, 59.28; H, 7.25; N, 4.44. tert-Butyl (4-(tert-butyl)benzoyl)glycinate (3n) Colorless solid. M.p.: 89–91 °C. Yield: 0.14 g (47%). IR (KBr) (νmax, cm–1): 3265, 3070, 2967, 1736, 1638, 1544, 1329, 1144. 1H NMR (500.1 MHz, CDCl3): δ = 1.29 (s, 9 H, 3 CH3), 1.60 (s, 9 H, 3 CH3), 4.47 (d, 3 J = 6.4 Hz, 2 H, CH2), 7.38 (d, 3 J = 6.9 Hz, 2 H, 2 CH), 7.79 (d, 3 J = 6.9 Hz, 2 H, 2 CH), 8.32 (br d, 3 J = 6.4 Hz, 1 H, NH) ppm. 13C NMR (125.7 MHz, CDCl3): δ = 30.4 (3 CH3), 33.8 (3 CH3), 39.1 (C), 46.9 (CH2), 85.1 (C), 128.1 (2 CH), 128.6 (2 CH), 134.3 (C), 153.2 (C), 165.3 (CH), 167.9 (C) ppm. MS: m/z (%) = 291 ([M]+, 1), 234 (27), 161 (85), 133 (29), 130 (46), 57 (100). Anal. Calcd for C17H25NO3 (291.39): C, 70.07; H, 8.65; N, 4.81. Found: C, 70.29; H, 8.92; N, 4.98. tert-Butyl (1-methyl-1H-indole-3-carbonyl)glycinate (3o) Yellow solid. M.p.: 97–99 °C. Yield: 0.26 g (89%). IR (KBr) (νmax, cm–1): 3231, 3065, 2979, 1739, 1643, 1547, 1344, 1124. 1H NMR (500.1 MHz, CDCl3): δ = 1.56 (s, 9 H, 3 CH3), 3.51 (s, 3 H, CH3), 4.10 (d, 3 J = 6.0 Hz, 2 H, CH2), 7.52–7.60 (m, 3 H, 3 CH), 8.22 (br d, 3 J = 6.0 Hz, 1 H, NH), 8.28 (s, 1 H, CH), 8.40 (d, 3 J = 6.9 Hz, 1 H, CH) ppm. 13C NMR (125.7 MHz, CDCl3): δ = 33.1 (3 CH3), 36.9 (CH3), 45.7 (CH2), 83.8 (C), 114.1 (CH), 114.6 (C), 123.1 (CH), 123.4 (CH), 125.8 (CH), 128.2 (C), 134.5 (CH), 138.0 (C), 165.7 (CH), 168.2 (C). MS: m/z (%) = 288 ([M]+, 7), 273 (16), 231 (28), 158 (89), 131 (52), 57 (100) ppm. Anal. Calcd for C16H20N2O3 (288.35): C, 66.65; H, 6.99; N, 9.72. Found: C, 66.83; H, 7.24; N, 9.89. tert-Butyl (2,4,6-trimethylbenzoyl)glycinate (3p) Pale yellow solid. M.p.: 107–109 °C. Yield: 0.07 g (26%). IR (KBr) (νmax, cm–1): 3240, 3043, 2978, 1740, 1641, 1530, 1344, 1141. 1H NMR (500.1 MHz, CDCl3): δ = 1.61 (s, 9 H, 3 CH3), 2.32 (s, 3 H, CH3), 2.38 (s, 6 H, 2 CH3), 4.37 (d, 3 J = 5.6 Hz, 2 H, CH2), 6.91 (s, 2 H, 2 CH), 8.31 (br d, 3 J = 5.6 Hz, 1 H, NH) ppm. 13C NMR (125.7 MHz, CDCl3): δ = 20.7 (2 CH3), 24.1 (CH3), 33.5 (3 CH3), 47.0 (CH2), 83.1 (C), 129.6 (2 CH), 132.3 (2 C), 136.1 (C), 143.8 (C), 165.2 (CH), 167.9 (C) ppm. MS: m/z (%) = 277 ([M]+, 3), 220 (32), 147 (67), 131 (58), 119 (81), 57 (100). Anal. Calcd for C16H23NO3 (277.36): C, 69.29; H, 8.36; N, 5.05. Found: C, 69.53; H, 8.61; N, 5.24.