Synthesis
DOI: 10.1055/s-0036-1588569
short review
© Georg Thieme Verlag Stuttgart · New York

Studies Towards the Synthesis of (+)- and (–)-Anisomycin and Their Analogues

Sama Ajay, Arun K. Shaw*
  • Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Sector 10, Jankipuram Extension, Sitapur road, Lucknow-226031, U. P., India   Email: akshaw55@yahoo.com
Further Information

Publication History

Received: 02 August 2017

Accepted after revision: 23 August 2017

Publication Date:
04 October 2017 (eFirst)

Abstract

Anisomycin shows potent biological activity and it has attracted much attention since its isolation in 1954, with around 13 total syntheses and 20 formal syntheses, and also two reports concerning analogues of anisomycin, reported to date. The present review highlights all of these synthetic approaches (around 35) to the total or formal synthesis of anisomycin along with its isomers and analogues.

1 Introduction

2 Isolation and Therapeutic Importance

3 Total Synthesis of (+)-, (–)-, and (±)-Anisomycins and Their Analogues

4 Formal Synthesis of (+)- and (–)-Anisomycins and Their Analogues

5 Conclusion

 
  • References

    • 1a Pearson WH. In Studies in Natural Product Chemistry . Vol. 1 Rahman AU. Elsevier; Amsterdam; 1988: 323
    • 1b O’Hagan D. Nat. Prod. Rep. 2000; 17: 435
    • 1c Bridges RJ. Lovering FE. Humphrey JM. Stanley MS. Blakely TN. Cristopharo MF. Chamberlin AR. Bioorg. Med. Chem. Lett. 1993; 3: 115 ; and references cited therein
    • 1d Petrillo EW. Indetti MA. Med. Res. Rev. 1982; 2: 1
  • 2 Storer R. Iminosugar theraupetics: time for a new look? ­Presented at 2nd RSC Symposium on Chemical Biology for Drug Discovery, 20-21 March 2012, AstraZeneca, Macclesfield. Presentation can be downloaded at: http://www.rsc.org/ images/RichardStorer_tcm18-215651.pdf (accessed 20.09.2017).
  • 3 Sobin BA. Tanner FW. J. Am. Chem. Soc. 1954; 76: 4053
    • 4a Ishida S. Yamada O. Futatsuya F. Ito K. Yamamoto H. Munakata K. Proceedings of the First Intersectional Congress of IAMS . Vol. 3 Hasegawa T. International Association of Microbiological Societies. Intersectional Congress (Tokyo, Japan) (1st = 1974), Science Council of Japan; Tokyo; 1975: 641
    • 4b Hosoya Y. Kameyama T. Naganawa H. Okami Y. Takeuchi T. J. Antibiot. 1993; 46: 1300
  • 5 Beereboom JJ. Butler K. Pennington FC. Solomons IA. J. Org. Chem. 1965; 30: 2334
  • 6 Wong CM. Can. J. Chem. 1968; 46: 1101
  • 7 Schaefer JP. Wheatley PJ. J. Org. Chem. 1968; 33: 166
    • 8a Jimenez A. Vazquez D. In Antibiotics . Hahn FE. Springer; Berlin; 1979: 1-19
    • 8b Grollman AP. J. Biol. Chem. 1967; 242: 3226
  • 9 Schwartdt O. Veith U. Gaspard C. Jäger V. Synthesis 1999; 1473
  • 10 Santander VM. Cue AB. Diaz JG. H. Balmis FJ. Miranda G. Urbina E. Portilla J. Plata AA. Zapata HB. Munoz VA. Abreu LM. Rev. Invest. Biol. Univ. Guadalajara 1961; 1: 94
    • 11a Frye WW. Mule JG. Swartzwelder C. Antibiot. Annu. 1955; 820
    • 11b Armstrong T. Santa Maria O. Antibiot. Annu. 1955; 824
  • 12 Korzybski T. Kowszyk-Gindifer Z. Kurytowicz W. Antibiotics . Vol. 1 American Society of Microbiology; Washington DC; 1978: 343
    • 13a Kim JH. Curtis-Long MJ. Woo DS. Jin HL. Byong WL. Yong JY. Kyu YK. Park KH. Bioorg. Med. Chem. Lett. 2005; 15: 4282
    • 13b Chapman TM. Courtney S. Hay P. Davis BG. Chem. Eur. J. 2003; 9: 3397
  • 14 Oida S. Ohki E. Chem. Pharm. Bull. 1968; 16: 2086
    • 15a McKinney LL. Uhing WH. Setzkorn EA. Cowan JC. J. Am. Chem. Soc. 1950; 72: 2599
    • 15b McKinney LL. Uhing WH. Setzkorn EA. Cowan JC. J. Am. Chem. Soc. 1952; 74: 5183
  • 16 Wong CM. Buccini J. Chang I. Te Raa J. Schwenk R. Can. J. Chem. 1969; 47: 2421
  • 17 Wong CM. Buccini J. Te Raa J. Can. J. Chem. 1968; 46: 3091
  • 18 Felner I. Schenker K. Helv. Chim. Acta 1970; 53: 754
  • 19 Schumacher DP. Hall SS. J. Am. Chem. Soc. 1982; 104: 6076
  • 20 Buchanan JG. MacLean KA. Wightman RH. Paulsen H. J. Chem. Soc., Perkin Trans. 1 1985; 1463
  • 21 Iida H. Yamazaki N. Kibayashi C. J. Org. Chem. 1986; 51: 1069
  • 22 Iida H. Yamazaki N. Kibayashi C. Tetrahedron Lett. 1985; 26: 3255
  • 23 Meyers AI. Dupre B. Heterocycles 1987; 25: 113
  • 24 Shi ZC. Lin GQ. Tetrahedron: Asymmetry 1995; 6: 2907
  • 25 Hulme AN. Rosser EM. Org. Lett. 2002; 4: 265
  • 26 Kaden S. Brockmann M. Reissig HU. Helv. Chim. Acta 2005; 88: 1826
  • 27 Joo JE. Lee KY. Pham VT. Tian YS. Ham WH. Org. Lett. 2007; 9: 3627
  • 28 Li J. Feng YH. Li XB. Han W. Liu HQ. Shao GG. Chin. Chem. Lett. 2012; 23: 647
  • 29 Ajay S. Saidhareddy P. Shaw AK. Synthesis 2016; 48: 1191
  • 30 Morillo M. Lequart V. Grand E. Goethals G. Usubillaga A. Villa P. Martin P. Carbohydr. Res. 2001; 334: 281
  • 31 Shono T. Kise N. Chem. Lett. 1987; 697
  • 32 Baer HH. Zamkanei M. J. Org. Chem. 1988; 53: 4786
    • 33a Thiem J. Wessel HP. Justus Liebigs Ann. Chem. 1983; 2173
    • 33b Green JW. Pacsu E. J. Am. Chem. Soc. 1937; 59: 1205
    • 33c Pascu E. Methods Carbohydr. Chem. 1963; 2: 35
  • 34 Jegham S. Das BC. Tetrahedron Lett. 1988; 29: 4419
    • 35a Baker BR. Joseph JP. Williams JH. J. Am. Chem. Soc. 1955; 77: 1
    • 35b Siedel W. Sturm K. Geiger R. Chem. Ber. 1963; 96: 1436
    • 35c Moersch GW. Rebstock MC. Wittle EL. Tinney FJ. Nicolaides ED. Hutt MP. Mich TF. Vandenbelt JM. J. Med. Chem. 1979; 22: 935
  • 36 Takano S. Iwabuchi Y. Ogasawara K. Heterocycles 1989; 29: 1861
  • 37 Takahata H. Banba Y. Tajima M. Momose T. J. Org. Chem. 1991; 56: 240
  • 38 Ballini R. Marcantoni E. Petrini M. J. Org. Chem. 1992; 57: 1316
  • 39 Veith U. Schwardt O. Jäger V. Synlett 1996; 1181
  • 40 Al-Hakim AH. Haines AH. Morley C. Synthesis 1985; 207
  • 41 Huang PQ. Wang SL. Ruan YP. Gao JX. Nat. Prod. Lett. 1997; 11: 101
  • 42 Huang PQ. Wang SL. Zheng H. Fei XS. Tetrahedron Lett. 1997; 38: 271
  • 43 Delair P. Brot E. Kanazawa A. Greene AE. J. Org. Chem. 1999; 64: 1383
  • 44 Chandrasekhar S. Ramachandar T. Reddy MV. Synthesis 2002; 1867
  • 45 Huang PQ. Zheng X. ARKIVOC 2003; (ii): 7
  • 46 Ono M. Tanikawa S. Suzuki K. Akita H. Tetrahedron 2004; 60: 10187
  • 47 Hirner S. Somfai P. Synlett 2005; 3099
  • 48 Kim JH. Curtis-Long MJ. Seo WD. Ryu YB. Yang MS. Park KH. J. Org. Chem. 2005; 70: 4082
    • 49a Sardina FJ. Rapoport H. Chem. Rev. 1996; 96: 1825
    • 49b Chang KT. Jang KC. Park HY. Kim YK. Park KH. Lee WS. Heterocycles 2001; 55: 1173
  • 50 Reddy JS. Kumar AR. Rao BV. Tetrahedron: Asymmetry 2005; 16: 3154
  • 51 Wu W. Wu Y. J. Org. Chem. 1993; 58: 3586
  • 52 Chouthaiwale PV. Kotkar SP. Sudalai A. ARKIVOC 2009; (ii): 88
  • 53 Detz RJ. Abiri Z. Griel RL. Hiemstra H. van Maarseveen JH. Chem. Eur. J. 2011; 17: 5921
  • 54 Reddy KS. Rao BV. Tetrahedron: Asymmetry 2011; 22: 190
  • 55 Zeng J. Zhang Q. Zhang HK. Chen A. RSC Adv. 2013; 3: 20298
  • 56 Kim K. Hong HW. Lee SH. Bull. Korean Chem. Soc. 1998; 19: 37
  • 57 Ryu Y. Kim G. J. Org. Chem. 1995; 60: 103
  • 58 Markus, J.; Minarechová, M.; Berkeš, D., Stereoselective Synthesis of 4-Deoxyanisomycine Homologues and Related 2-Phenethyl-3-hydroxy-pyrrolidines, In Proceedings of the 16th Int. Electron. Conf. Synth. Org. Chem., 1–30 November 2012, Sciforum ­Electronic Conference Series, 2012, Vol. 16; ­http://sciforum.net/conference/ecsoc-16/paper/1051.