CC BY ND NC 4.0 · SynOpen 2017; 01(01): 0121-0124
DOI: 10.1055/s-0036-1588574
letter
Copyright with the author

New Facile Synthesis of Adamantyl Isothiocyanates

Vladimir Burmistrov, Dmitry Pitushkin, Gennady Butov*
  • Department of Chemistry, Technology and Equipment of Chemical Industry, Volzhsky Polytechnic Institute (Branch) Volgograd State Technical University, 404121 Volzhsky, Engels st., 42a, Russia   Email: butov@volpi.ru
This work was supported by the Russian Fund for Basic Research (grant number 16-33-00172) and by the Ministry of Education and Science of the Russian Federation (base part of state assignment for 2017–2019; project no. 4.7491.2017/BCh).
Further Information

Publication History

Received: 20 July 2017

Accepted after revision: 29 August 2017

Publication Date:
15 September 2017 (online)

Abstract

A series of adamantyl isothiocyanates containing different substituents in the nodal positions of adamantane or spacers between the adamantane and isothiocyanate group have been synthesised by using the reaction of the corresponding adamantyl amines with phenyl isothiocyanate.

Supporting Information

 
  • References and Notes

  • 1 Butov GM. Burmistrov VV. Danilov DV. Pitushkin DA. Morisseau C. Hammock BD. Russ. Chem. Bull. 2015; 64: 1569
  • 2 Venkatraj M. Messagie J. Joossens J. Lambeir AM. Haemers A. Van der Veken P. Augustyns K. Bioorg. Med. Chem. 2012; 20: 1557
  • 3 Lakouraj MM. Ghodrati K. Monatsh. Chem. 2008; 139: 549
    • 4a Kodani SD. Hammock BD. Drug Metab. Dispos. 2015; 43: 788
    • 4b Lee KS. S. Liu J.-Y. Wagner KM. Pakhomova S. Dong H. Morisseau C. Fu SH. Yang J. Wang P. Ulu A. Mate CA. Nguyen LV. Hwang SH. Edin ML. Mara AA. Wulff H. Newcomer ME. Zeldin DC. Hammock BD. J. Med. Chem. 2015; 57: 7016
  • 5 Takeda K. Tsuboyama K. Takeura M. Chem. Pharm. Bull. 1989; 37: 2334
  • 6 Nam KD. Han M. Yoon J. Kim E. Cho S. Hahn H. Bull. Korean Chem. Soc. 2013; 34: 271
  • 7 Sasaki T. Nakanishi A. Ohno M. J. Org. Chem. 1981; 46: 5445
  • 8 Stetter J. Wulff D. Chem. Ber. 1962; 95: 2302
  • 9 Scattolin T. Klein A. Schoenebeck F. Org. Lett. 2017; 19: 1831
    • 10a Burmistrov V. Morisseau C. Lee KS. S. Shihadih DS. Harris TR. Butov GM. Hammock BD. Bioorg. Med. Chem. Lett. 2014; 24: 2193
    • 10b Burmistrov V. Morisseau C. Danilov D. Harris TR. Dalinger I. Vatsadze I. Shkineva T. Butov GM. Hammock BD. Bioorg. Med. Chem. Lett. 2015; 25: 5514
    • 10c Butov GM. Burmistrov VV. Danilov DV. Pitushkin DA. Morisseau C. Hammock BD. Russ. Chem. Bull. 2015; 64: 1569
  • 11 Burmistrov VV. Butov GM. Pitushkin DA. Russ. J. Org. Chem. 2015; 51: 1795
  • 12 Satchell DP. N. Satchell RS. Chem. Soc. Rev. 1975; 2: 231
  • 13 Habib NS. Rieker A. Synthesis 1984; 825
  • 14 Turkevich NM. Agaev KA. Steblyuk PN. Sementsiv GN. Khim.-Farm. Zh. 1982; 16: 1068
  • 15 Sbei N. Haouas B. Chebbi M. Smida YB. Arfaoui Y. Boujlel K. Benkhoud ML. J. Sulfur Chem. 2017; 38: 152
  • 16 Burmistrov VV. Pitushkin DA. Dyachenko VS. Sdvijkov DV. Kirilov SS. Rasskazova EV. Butov GM. Izvestia VSTU 2016; 4: 68
  • 17 General Experimental Procedure: To a solution of amine (5–10 mmol) in p-xylene (10–20 mL) was added phenyl isothiocyanate (2 equiv) at room temperature. After heating to reflux for 3 h, the reaction mixture was cooled to r.t. and conc HCl (1–2 mL) was added. After stirring for 1 h, the precipitate was filtered off, the filtrate was concentrated in vacuo and the residue was purified either by crystallization from EtOH (for solid compounds 5, 7, 8, 11) or by column chromatography (for liquid compounds 3, 9, 10).Analytical Data for Compound 3: Yield: 80%; yellow oil; MS (EI): m/z (%) = 221 (5%) [M]+, 163 (100%) [Ad]+; 1H NMR (500 MHz, CDCl3): δ = 2.17 (s, 1 H), 1.81 (s, 2 H), 1.62 (dd, J = 13.0, 12.0 Hz, 4 H), 1.32 (dd, J = 16.0, 12.5 Hz, 4 H), 1.15 (s, 2 H), 0.87 (s, 6 H). 13C NMR (125 MHz, CDCl3): δ = 129.92 (s, 1 C, NCS), 59.75 (s, 1 C, C-NCS), 49.88 (s, 1 C, Ad), 49.61 (s, 2 C, Ad), 42.26 (s, 1 C, Ad), 41.89 (s, 2 C, Ad), 32.58 (s, 1 C, Ad), 29.90 (s, 2 C, Ad), 29.62 (s, 2 C, 2CH3). Elemental analysis calcd for C13H19NS: C, 70.54; H, 8.65; N, 6.33; S, 14.48; found: C, 70.59; H, 8.67; N, 6.29; S, 14.44.Analytical Data for Compound 9: Yield: 78%; yellow oil; MS (EI): m/z (%) = 221 (15) [M]+, 135 (100) [Ad]+. 1H NMR (500 MHz, CDCl3): δ = 3.51 (t, J = 7.5 Hz, 2 H, CH2-NCS), 1.96 (s, 3 H), 1.67 (dd, J = 32.0, 12.0 Hz, 4 H), 1.54–1.49 (m, 10 H). 13C NMR (125 MHz, CDCl3): δ = 128.99 (s, 1 C, NCS), 43.89 (s, 1 C, CH2-NCS), 41.88 (s, 3 C, Ad), 40.19 (s, 1 C, Ad-CH2), 36.79 (s, 3 C, Ad), 28.38 (s, 3 C, Ad), 27.54 (s, 1 C, quaternary C in Ad). Elemental analysis calcd for C13H19NS: C, 70.54; H, 8.65; N, 6.33; S, 14.48; found: C, 70.50; H, 8.66; N, 6.33; S, 14.45.Analytical Data for Compound 10: Yield: 86%; brown oil; MS (EI): m/z (%) = 221 (12) [M]+, 163 (8) [Ad-CH(CH3]+, 135 (100) [Ad]+. 1H NMR (500 MHz, CDCl3): δ = 3.35 (q, J = 6.5 Hz, 1 H, CH), 2.03 (s, 3 H), 1.74–1.46 (m, 12 H), 1.27 (d, J = 6.5 Hz, 3 H, CH3). 13C NMR (125 MHz, CDCl3): δ = 128.50 (s, NCS), 63.68 (s, 1 C, CH), 38.22 (s, 3 C, Ad), 36.90 (s, quaternary C in Ad), 36.72 (s, 3 C, Ad), 28.17 (s, 3 C, Ad), 15.13 (s, 1 C, CH3). Elemental analysis calcd for C13H19NS: C, 70.54; H, 8.65; N, 6.33; S, 14.48; found: C, 70.51; H, 8.66; N, 6.32; S 14.45