Synlett
DOI: 10.1055/s-0036-1588575
letter
© Georg Thieme Verlag Stuttgart · New York

Oxidation of Organosulfides to Organosulfones with Trifluoromethyl 3-Oxo-1λ3,2-benziodoxole-1(3H)-carboxylate as an Oxidant

Saeesh R. Mangaonkar, Priyanka B. Kole, Fateh V. Singh*
  • Chemistry Division, School of Advanced Science, VIT University, Chennai Campus, Chennai-600127, Tamil Nadu, India   Email: fatehveer.singh@vit.ac.in
Further Information

Publication History

Received: 02 August 2017

Accepted after revision: 29 August 2017

Publication Date:
21 September 2017 (eFirst)

Abstract

An alternative approach is described for the oxidation of organosulfides to the corresponding organosulfones by using trifluoromethyl 3-oxo-1λ3,2-benziodoxole-1(3H)-carboxylate as an oxidant. The oxidation of the sulfides was performed by using 2.4 equivalents of the oxidant in refluxing acetonitrile. The oxidation products were isolated in good to excellent yields.

Supporting Information

 
  • References and Notes

    • 1a Xu F. Chen Y. Fan E. Sun Z. Org. Lett. 2016; 18: 2777
    • 1b Hartz RA. Arvanitis AG. Arnold C. Rescinito JP. Hung KL. Zhang G. Wong H. Langley DR. Gilligan PJ. Trainor GL. Bioorg. Med. Chem. Lett. 2006; 16: 934
    • 1c Pal M. RaoVeeramaneni V. Nagabelli M. RaoKalleda S. Misra P. RaoCasturi S. Rao Veleswarapu K. Bioorg. Med. Chem. Lett. 2003; 13: 1639
    • 1d Otzen T. Wempe EG. Kunz B. Bartels R. Lehwark-Yvetot G. Hänsel W. Schaper K.-J. Seydel JK. J. Med. Chem. 2003; 47: 240
    • 1e Doherty GA. Kamenecka T. McCauley E. Van Riper G. Mumford RA. Tong S. Hagmann WK. Bioorg. Med. Chem. Lett. 2002; 12: 729
  • 2 Nohara T. Fujiwara Y. Ikeda T. Murakami K. Ono M. Nakano D. Kinjo J. Chem. Pharm. Bull. 2013; 61: 695
  • 3 Sang Y. Connor DT. Doubleday R. Sorenson RJ. Sercel AD. Unangst PC. Roth BD. Gilbertsen RB. Chan K. Schrier DJ. Guglietta A. Bornemeier DA. Dyer RD. J. Med. Chem. 1999; 42: 1151
  • 4 Tozkoparan B. Küpeli E. Yeşilada E. Ertan M. Bioorg. Med. Chem. 2007; 15: 1808
    • 5a Zhou H. Zhu Q. Gan Z. Dong G. Xu Y. Med. Chem. Res. 2015; 24: 3920
    • 5b Sturino FC. Neill OG. Lachance N. Boyd M. Berthelette C. Labelle M. Li L. Roy B. Scheigetz J. Tsou N. Aubin Y. Bateman KP. Chauret N. Day SH. Levesque J.-F. Seto C. Silva JH. Trimble LA. Carriere M.-C. Denis D. Greig G. Kargman S. Lamontagne S. Matheiu M.-C. Sawyer N. Slipetz D. Abraham WM. Jones T. McAuliffe M. Piechuta H. Nicoll-Griffith DA. Wang Z. Zamboni R. Young RN. Metters KM. J. Med. Chem. 2007; 50: 794
  • 6 Yazdanyar S. Boer J. Ingvarsson G. Szepietowski JC. Jemec GB. E. Dermatology (Basel, Switz.) 2011; 222: 342 ; DOI: 10.1159/000329023
  • 7 Sunduru N. Salin O. Gylfe A. Elofsson M. Eur. J. Med. Chem. 2015; 101: 595 ; and references cited therein
  • 8 Zhao J. Li Z. Song S. Wang M.-A. Fu B. Zhang Z. Angew. Chem. Int. Ed. 2016; 55: 5545 ; and references cited therein
  • 9 El-Kerdawy MM. Selim HA. J. Drug Res. 1973; 5: 135
    • 10a Sharipov AK. Russ. J. Appl. Chem. 2003; 76: 108 ; DOI: 10.1023/A:1023308303
    • 10b Matteucci M. Bhalay G. Bradley M. Org. Lett. 2003; 5: 235
  • 11 Sun J. Zhu C. Dai Z. Yang M. Pan Y. Hu H. J. Org. Chem. 2004; 69: 8500
  • 12 Mba M. Prins LJ. Licini G. Org. Lett. 2007; 9: 21
    • 13a Gao J. Guo H. Liu S. Wang M. Tetrahedron Lett. 2007; 48: 8453
    • 13b Khedher I. Ghorbel A. J. Porous Mater. 2010; 17: 501
  • 14 Li T.-T. Li F.-M. Zhao W.-L. Tian Y.-H. Chen Y. Cai R. Fu W.-F. Inorg. Chem. 2015; 54: 183
  • 15 Bagherzadeh M. Latifi R. Tahsini L. Amini M. Catal. Commun. 2008; 10: 196
  • 16 Bonchio M. Licini G. Di Furia F. Mantovani S. Modena G. Nugent WA. J. Org. Chem. 1999; 64: 1326
  • 17 Liu R. Wu L.-z. Feng X.-m. Zhang Z. Li Y.-z. Wang Z.-l. Inorg. Chim. Acta 2007; 360: 656
  • 18 Egami H. Katsuki T. J. Am. Chem. Soc. 2007; 129: 8940
  • 19 Wagh RB. Nagarkar JM. Catal. Lett. 2017; 147: 181
  • 20 Rostami A. Navasi Y. Moradi D. Ghorbani-Choghamarani A. Catal. Commun. 2014; 43: 16
    • 21a Umierski N. Manolikakes G. Org. Lett. 2013; 15: 188
    • 21b Margraf N. Manolikakes G. J. Org. Chem. 2015; 80: 2582
    • 22a Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 22b Singh FV. Wirth T. In Comprehensive Organic Synthesis II . Vol. 7, Chap. 7.29 Knochel P. Molander GA. Elsevier; Amsterdam; 2014: 880
    • 22c Zhdankin VV. J. Org. Chem. 2011; 76: 1185
    • 22d Merritt EA. Olofsson B. Angew. Chem. 2009; 121: 9214 ; Angew. Chem. Int. Ed. 2009, 48, 9052
    • 22e Zhdankin VV. ARKIVOC 2009; (i): 1
    • 22f Farooq U. Shah AA. Wirth T. Angew. Chem. 2009; 121: 1036 ; Angew. Chem. Int. Ed. 2009, 48, 1018
    • 22g Zhdankin VV. Stang PJ. Chem. Rev. 2008; 108: 5299
    • 22h Ladziata U. Zhdankin VV. Synlett 2007; 527
    • 22i Wirth T. Angew. Chem. 2005; 117: 3722 ; Angew. Chem. Int. Ed. 2005, 44, 3656
    • 22j Moriarty RM. J. Org. Chem. 2005; 70: 2893
    • 22k Wirth T. In Organic Synthesis Highlights V . Schmalz H.-G. Wirth T. Wiley-VCH; Weinheim; 2003: 144
    • 22l Wirth T. Hypervalent Iodine Chemistry: Modern Developments in Organic Synthesis. Springer; Berlin; 2003
    • 22m Zhdankin VV. Chem. Rev. 2002; 102: 2523
    • 22n Wirth T. Angew. Chem. 2001; 113: 2893 ; Angew. Chem. Int. Ed. 2001, 40, 2812
    • 23a Qian G. Liu B. Tan Q. Zhang S. Xu B. Eur. J. Org. Chem. 2014; 4837
    • 23b Mizar P. Wirth T. Angew. Chem. 2014; 6103 ; Angew. Chem. Int. Ed. 2014, 53, 5993
    • 23c Singh FV. Wirth T. Synthesis 2013; 45: 2499 ; and references are cited therein
    • 23d Singh FV. Rehbein J. Wirth T. ChemistryOpen 2012; 1: 245
    • 23e Kajiyama D. Saitoh T. Yamaguchi S. Nishiyama S. Synthesis 2012; 44: 1667
    • 23f Paz NR. Santana AG. Francisco CG. Suárez E. González CC. Org. Lett. 2012; 14: 3388
    • 23g Wardrop DJ. Yermolina MV. Bowen EG. Synthesis 2012; 44: 1199
    • 23h Singh FV. Wirth T. Org. Lett. 2011; 13: 6504
    • 23i Du X. Chen H. Chen Y. Chen J. Liu Y. Synlett 2011; 1010
    • 23j Wang H. Fan R. J. Org. Chem. 2010; 75: 6994
    • 23k Moriarty RM. Tyagi S. Kinch M. Tetrahedron 2010; 66: 5801
    • 23l Bose SS. Idrees M. Synthesis 2010; 398
    • 23m Pardo LM. Tellitu I. Domínguez E. Synthesis 2010; 971
    • 24a Xie A. Zhou X. Feng L. Hu X. Dong W. Tetrahedron 2014; 70: 3514
    • 24b Xu S. Itto K. Satoh M. Arimoto H. Chem. Commun. 2014; 50: 2758
  • 25 Matassini C. Parmeggiani C. Cardona F. Goti A. Org. Lett. 2015; 17: 4082
  • 26 CAUTION! IBX and Dess–Martin periodinane are explosive upon impact or heating at >200 °C; see: Plumb JB. Harper DJ. Chem. Eng. News 1990; 68: 3 DOI: 10.1021/cen-v068n029.p002
    • 27a More JD. Finney NS. Org. Lett. 2002; 4: 3001
    • 27b Nicolaou KC. Baran PS. Zhong Y.-L. J. Am. Chem. Soc. 2001; 123: 3183
    • 27c Nicolaou KC. Zhong Y.-L. Baran PS. J. Am. Chem. Soc. 2000; 122: 7596
  • 28 Zagulyaeva AA. Yusubov MS. Zhdankin VV. J. Org. Chem. 2010; 75: 2119
    • 29a Kasumov TM. Brel VK. Grishin YK. Zefirov NS. Stang PJ. Tetrahedron 1997; 53: 1145
    • 29b Page TK. Wirth T. Synthesis 2006; 3153
    • 30a Freudendahl DM. Iwaoka M. Wirth T. Eur. J. Org. Chem. 2010; 3934
    • 30b O’Mahony GE. Ford A. Maguire AR. J. Org. Chem. 2012; 77: 3288
  • 31 Sulfones 10ah; General Procedure A mixture of the appropriate sulfide 9 (0.5 mmol) and benziodoxole 8 (413 mg, 2.4 equiv) in MeCN (3 mL) was refluxed for 16–20 h. When the reaction was complete (TLC), sat. aq NaHCO3 (5 mL) was added and the mixture was extracted with EtOAc (3 × 15 mL). The organic layers were combined, dried (Na2SO4), filtered, and concentrated under vacuum. The crude product was purified by column chromatography [silica gel, EtOAc–hexane (1:3)]. tert-Butyl Phenyl Sulfone (10a) 22b White solid; yield: 84 mg (0.42 mmol, 85%); mp; 90–92 °C. IR (film): 697, 725, 749, 764, 802, 996, 1021, 1076, 1130, 1277, 1294, 1449, 1475 cm–1. 1H NMR (400 MHz, CDCl3): δ = 1.23 (s, 9 H, t-Bu), 7.46 (t, J = 7.6 Hz, 2 H, ArH), 7.56 (t, J = 7.6 Hz, 1 H, ArH), 7.77 (d, J = 7.6 Hz, 2 H, ArH). 13C NMR (100 MHz, CDCl3): δ = 23.5, 59.7, 128.7, 130.3, 133.6, 135.2. GC/MS: m/z (%) = 198(5), 143(25), 79(13), 77(50), 58(29), 57(100), 51(51), 41(50).
  • 32 Mangaonkar SR. Singh FV. Der Pharma Chem. 2016; 8: 419