Synthesis 2017; 49(22): 4899-4916
DOI: 10.1055/s-0036-1588577
review
© Georg Thieme Verlag Stuttgart · New York

Synthetic Approaches to 2,6-trans-Tetrahydropyrans

Zhihong Zhang
a   Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Kowloon, Hong Kong, P. R. of China
,
a   Department of Chemistry, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Kowloon, Hong Kong, P. R. of China
b   HKUST Shenzhen Research Institute, Shenzhen 518057, P. R. of China   rtong@ust.hk
› Institutsangaben
This research was financially supported by the Research Grant Council of Hong Kong (GRF 605113, GRF 16305314, and GRF 16311716), HKUST (Start-up R9309) and the National Natural Science Foundation of China (No. 21472160)
Weitere Informationen

Publikationsverlauf

Received: 15. Juni 2017

Accepted after revision: 12. Juli 2017

Publikationsdatum:
28. September 2017 (online)


Abstract

Being different from 2,6-cis-tetrahydropyrans (2,6-cis-THPs), the corresponding 2,6-trans-THPs are thermodynamically less stable and more challenging to construct. The fact that there are many natural products and/or bioactive molecules containing this 2,6-trans-THP subunit has led to the development of many efficient synthetic approaches to access 2,6-trans-THPs. This review summarizes various synthetic methods reported for this structural motif and/or related applications in the total synthesis of natural products.

1 Introduction

2 Nucleophilic Addition to an Oxocarbenium Ion (Strategy A)

3 Intramolecular Oxa-Michael Addition (Strategy B)

4 Intermolecular Michael Addition to Dihydropyranones (Strategy A)

5 The Heck–Matsuda (Strategy A) Reaction and Oxa-Heck Cyclization (Strategy B)

6 Intramolecular SN2 Substitution and Epoxide Opening (Strategy B)

7 Miscellaneous Methods

8 Conclusion and Outlook

 
  • References

    • 1a Boivin TL. B. Tetrahedron 1987; 43: 3309
    • 1b Clarke PA. Santos S. Eur. J. Org. Chem. 2006; 2045
    • 1c Perry MA. Rychnovsky SD. Sizemore N. Synthesis of Saturated Tetrahydropyrans. In Synthesis of Saturated Oxygenated Heterocycles I: 5- and 6-Membered Rings. Cossy J. Springer; Berlin: 2014: 43-95
  • 2 Vetica F. Chauhan P. Dochain S. Enders D. Chem. Soc. Rev. 2017; 46: 1661
  • 3 Smith AB. III. Fox RJ. Razler TM. Acc. Chem. Res. 2008; 41: 675
    • 4a Clarke PA. Santos S. Mistry N. Burroughs L. Humphries AC. Org. Lett. 2011; 13: 624
    • 4b Iqbal M. Mistry N. Clarke PA. Tetrahedron 2011; 67: 4960
    • 4c For a recent review, see: Clarke PA. Ermanis K. Curr. Org. Chem. 2013; 17: 2025
  • 5 Olier C. Kaafarani M. Gastaldi S. Bertrand MP. Tetrahedron 2010; 66: 413
  • 6 Fuwa H. Heterocycles 2012; 85: 1255
  • 7 Kotsuki H. Synlett 1992; 97
    • 8a Kasai Y. Ito T. Sasaki M. Org. Lett. 2012; 14: 3186
    • 8b Ghosh AK. Gong G. Chem. Asian J. 2008; 3: 1811
    • 8c Raghavan S. Samanta PK. Org. Lett. 2012; 14: 2346
    • 8d Evans DA. Kværnø L. Dunn TB. Beauchemin A. Raymer B. Mulder JA. Olhava EJ. Juhl M. Kagechika K. Favor DA. J. Am. Chem. Soc. 2008; 130: 16295
    • 8e Ruijter E. Schültingkemper H. Wessjohann LA. J. Org. Chem. 2005; 70: 2820
  • 9 Yu M. Ibrahem I. Hasegawa M. Schrock RR. Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 2788
  • 10 Kartika R. Gruffi TR. Taylor RE. Org. Lett. 2008; 10: 5047
    • 11a Bai Y. Davis DC. Dai M. Angew. Chem. Int. Ed. 2014; 53: 6519
    • 11b Semmelhack MF. Bodurow C. J. Am. Chem. Soc. 1984; 106: 1496
    • 11c Yang Z. Zhang B. Zhao G. Yang J. Xie X. She X. Org. Lett. 2011; 13: 5916
    • 12a Mori Y. Yaegashi K. Furukawa H. J. Am. Chem. Soc. 1996; 118: 8158
    • 12b Morimoto Y. Nishikawa Y. Takaishi M. J. Am. Chem. Soc. 2005; 127: 5806
    • 12c Morimoto Y. Yata H. Nishikawa Y. Angew. Chem. Int. Ed. 2007; 46: 6481
    • 12d Vilotijevic I. Jamison TF. Science 2007; 317: 1189
    • 12e Simpson GL. Heffron TP. Merino E. Jamison TF. J. Am. Chem. Soc. 2006; 128: 1056
    • 12f Ho P.-T. Can. J. Chem. 1982; 60: 90
    • 12g Burke SD. Woon Jung K. Phillips JR. Perri RE. ­Tetrahedron Lett. 1994; 35: 703
    • 13a Reymond S. Ferrié L. Guérinot A. Capdevielle P. Cossy J. Pure Appl. Chem. 2008; 80: 1683
    • 13b Norcross RD. Paterson I. Chem. Rev. 1995; 95: 2041
    • 13c Yu MJ. Zheng W. Seletsky BM. Nat. Prod. Rep. 2013; 30: 1158
    • 13d Martin HJ. Magauer T. Mulzer J. Angew. Chem. Int. Ed. 2010; 49: 5614
    • 13e Nasir NM. Ermanis K. Clarke PA. Org. Biomol. Chem. 2014; 12: 3323
    • 13f Little RD. Nishiguchi GA. Synthetic Efforts Toward, and Biological Activity of Thyrsiferol and Structurally-Related Analogues. In Studies in Natural Products Chemistry. Vol. 35. Atta-ur-Rahman Elsevier; Oxford: 2008: 3-56
    • 14a Kobayashi M. Tanaka J.-i. Katori T. Matsuura M. Yamashita M. Kitagawa I. Chem. Pharm. Bull. 1990; 38: 2409
    • 14b Doi M. Ishida T. Kobayashi M. Kitagawa I. J. Org. Chem. 1991; 56: 3629
    • 14c Kitagawa I. Kobayashi M. Katori T. Yamashita M. Tanaka J. Doi M. Ishida T. J. Am. Chem. Soc. 1990; 112: 3710
    • 14d Kobayashi M. Tanaka J.-i. Katori T. Matsuura M. Kitagawa I. Tetrahedron Lett. 1989; 30: 2963
    • 14e Carmely S. Kashman Y. Tetrahedron Lett. 1985; 26: 511
    • 15a Pettit GR. Xu J.-P. Chapuis J.-C. Pettit RK. Tackett LP. Doubek DL. Hooper JN. A. Schmidt JM. J. Med. Chem. 2004; 47: 1149
    • 15b Cichewicz RH. Valeriote FA. Crews P. Org. Lett. 2004; 6: 1951
  • 16 Gouiffès D. Moreau S. Helbecque N. Bernier JL. Hénichart JP. Barbin Y. Laurent D. Verbist JF. Tetrahedron 1988; 44: 451
  • 17 Kito K. Ookura R. Yoshida S. Namikoshi M. Ooi T. Kusumi T. Org. Lett. 2008; 10: 225
  • 18 D’Ambrosio M. Guerriero A. Pietra F. Debitus C. Helv. Chim. Acta 1996; 79: 51
  • 19 Kunze B. Jansen R. Sasse F. Höfle G. Reichenbach H. J. Antibiot. 1998; 51: 1075
    • 20a Brooks HA. Gardner D. Poyser JP. King TJ. J. Antibiot. 1984; 37: 1501
    • 20b Gräfe U. Schade W. Roth M. Radics L. Incze M. Ujszaszy K. J. Antibiot. 1984; 37: 836
    • 20c Radics L. J. Chem. Soc., Chem. Commun. 1984; 599
  • 21 Yin J. Kouda K. Tezuka Y. Le Tran Q. Miyahara T. Chen Y. Kadota S. Planta Med. 2004; 70: 54
    • 22a Romero JA. C. Tabacco SA. Woerpel KA. J. Am. Chem. Soc. 2000; 122: 168
    • 22b Woods RJ. Andrews CW. Bowen JP. J. Am. Chem. Soc. 1992; 114: 859
  • 23 Graczyk PP. Mikołajczyk M. Anomeric Effect: Origin and Consequences . In Topics in Stereochemistry . Vol. 21. Eliel EL. Wilen SH. John Wiley & Sons; Hoboken: 2007: 59-349
    • 24a Zhu L. Hu Y. Sun F. Huang Y. Adv. Sci. Focus 2014; 2: 97
    • 24b Shing TK. M. Li L.-H. J. Org. Chem. 1997; 62: 1230
  • 25 Lewis MD. Cha JK. Kishi Y. J. Am. Chem. Soc. 1982; 104: 4976
  • 26 Mikami K. Kishino H. J. Chem. Soc., Chem. Commun. 1993; 1843
  • 27 Giannis A. Sandhoff K. Tetrahedron Lett. 1985; 26: 1479
  • 28 Gaertzen O. Misske AM. Wolbers P. Hoffmann HM. R. Synlett 1999; 1041
  • 29 Hoffmann RW. Schlapbach A. Tetrahedron Lett. 1993; 34: 7903
  • 30 Ayala L. Lucero CG. Romero JA. C. Tabacco SA. Woerpel KA. J. Am. Chem. Soc. 2003; 125: 15521
  • 31 Horita K. Sakurai Y. Nagasawa M. Hachiya S. Yonemitsu O. Synlett 1994; 43
    • 32a Paterson I. Cumming JG. Tetrahedron Lett. 1992; 33: 2847
    • 32b Keck GE. Lundquist GD. J. Org. Chem. 1999; 64: 4482
    • 33a Kopecky DJ. Rychnovsky SD. J. Am. Chem. Soc. 2001; 123: 8420
    • 33b Wipf P. Reeves JT. Chem. Commun. 2002; 2066
  • 34 Stamos DP. Kishi Y. Tetrahedron Lett. 1996; 37: 8643
  • 35 Lewis A. Stefanuti I. Swain SA. Smith SA. Taylor RJ. K. Tetrahedron Lett. 2001; 42: 5549
  • 36 Lewis A. Stefanuti I. Swain SA. Smith SA. Taylor RJ. K. Org. Biomol. Chem. 2003; 1: 104
  • 37 Hornberger KR. Hamblett CL. Leighton JL. J. Am. Chem. Soc. 2000; 122: 12894
  • 38 Evans PA. Cui J. Gharpure SJ. Hinkle RJ. J. Am. Chem. Soc. 2003; 125: 11456
  • 39 Kartika R. Taylor RE. Angew. Chem. Int. Ed. 2007; 46: 6874
  • 40 Mohapatra DK. Das PP. Pattanayak MR. Yadav JS. Chem. Eur. J. 2010; 16: 2072
  • 41 Yadav JS. Pattanayak MR. Das PP. Mohapatra DK. Org. Lett. 2011; 13: 1710
  • 42 Yadav JS. Gyanchander E. Mishra AK. Adithya P. Das S. Tetrahedron Lett. 2013; 54: 5879
  • 43 Maity S. Kanikarapu S. Marumudi K. Kunwar AC. Yadav JS. Mohapatra DK. J. Org. Chem. 2017; 82: 4561
  • 44 Cui J. Morita M. Ohno O. Kimura T. Teruya T. Watanabe T. Suenaga K. Shibasaki M. Chem. Eur. J. 2017; 23: 8500
    • 45a Teruaki M. Koichi N. Kazuo B. Chem. Lett. 1973; 2: 1011
    • 45b Kan SB. J. Ng KK. H. Paterson I. Angew. Chem. Int. Ed. 2013; 52: 9097
    • 45c Matsuo J.-i. Murakami M. Angew. Chem. Int. Ed. 2013; 52: 9109
    • 45d Beutner GL. Denmark SE. Angew. Chem. Int. Ed. 2013; 52: 9086
  • 46 Patron A. Richter P. Tomaszewski M. Miller R. Nicolaou K. J. Chem. Soc., Chem. Commun. 1994; 1147
  • 47 Smith AB. III. Verhoest PR. Minbiole KP. Lim JJ. Org. Lett. 1999; 1: 909
  • 48 Su Q. Dakin LA. Panek JS. J. Org. Chem. 2007; 72: 2
    • 49a Williams DR. Patnaik S. Plummer SV. Org. Lett. 2003; 5: 5035
    • 49b Paterson I. Tudge M. Angew. Chem. Int. Ed. 2003; 42: 343
    • 49c Wang Y. Janjic J. Kozmin SA. J. Am. Chem. Soc. 2002; 124: 13670
  • 50 Rybak T. Hall DG. Org. Lett. 2015; 17: 4156
  • 51 Crimmins MT. Stevens JM. Schaaf GM. Org. Lett. 2009; 11: 3990
  • 52 Dixon DJ. Ley SV. Tate EW. J. Chem. Soc., Perkin Trans. 1 2000; 2385
  • 53 Tomooka K. Matsuzawa K. Suzuki K. Tsuchihashi G.-i. ­Tetrahedron Lett. 1987; 28: 6339
  • 54 Crawley GC. Briggs MT. J. Org. Chem. 1995; 60: 4264
  • 55 Utimoto K. Horiie T. Tetrahedron Lett. 1982; 23: 237
  • 56 Jiang X. García-Fortanet J. De Brabander JK. J. Am. Chem. Soc. 2005; 127: 11254
    • 57a Han X. Floreancig PE. Org. Lett. 2012; 14: 3808
    • 57b Wan S. Wu F. Rech JC. Green ME. Balachandran R. Horne WS. Day BW. Floreancig PE. J. Am. Chem. Soc. 2011; 133: 16668
    • 57c Rech JC. Floreancig PE. Org. Lett. 2005; 7: 5175
  • 58 Terada M. Matsukawa S. Mikami K. J. Chem. Soc., Chem. Commun. 1993; 327
  • 59 Wan M. Meng Z. Lou H. Liu L. Angew. Chem. Int. Ed. 2014; 53: 13845
  • 60 Ferrier RJ. Overend WG. Ryan AE. J. Chem. Soc. 1962; 3667
  • 61 Danishefsky S. Kerwin JF. Jr. J. Org. Chem. 1982; 47: 3803
  • 62 Danishefsky SJ. Selnick HG. Zelle RE. DeNinno MP. J. Am. Chem. Soc. 1988; 110: 4368
  • 63 Williams DR. Mi L. Mullins RJ. Stites RE. Tetrahedron Lett. 2002; 43: 4841
    • 64a Ishihara K. Mori A. Yamamoto H. Tetrahedron Lett. 1987; 28: 6613
    • 64b Ishihara K. Mori A. Yamamoto H. Tetrahedron 1990; 46: 4595
  • 65 Crimmins MT. Siliphaivanh P. Org. Lett. 2003; 5: 4641
  • 66 Vakalopoulos A. Hoffmann HM. R. Org. Lett. 2001; 3: 177
  • 67 Schneider C. Schuffenhauer A. Eur. J. Org. Chem. 2000; 73
  • 68 Bates RW. Palani K. Tetrahedron Lett. 2008; 49: 2832
  • 69 Hiebel M.-A. Pelotier B. Lhoste P. Piva O. Synlett 2008; 1202
  • 70 Fuwa H. Yamaguchi H. Sasaki M. Org. Lett. 2010; 12: 1848
  • 71 Ermanis K. Hsiao Y.-T. Kaya U. Jeuken A. Clarke PA. Chem. Sci. 2017; 8: 482
  • 72 Lee H. Kim KW. Park J. Kim H. Kim S. Kim D. Hu X. Yang W. Hong J. Angew. Chem. Int. Ed. 2008; 47: 4200
  • 73 Byeon SR. Park H. Kim H. Hong J. Org. Lett. 2011; 13: 5816
  • 74 Hilli F. White JM. Rizzacasa MA. Org. Lett. 2004; 6: 1289
  • 75 Goodwin TE. Crowder CM. White RB. Swanson JS. Evans FE. Meyer WL. J. Org. Chem. 1983; 48: 376
  • 76 Goodwin TE. Rothman NM. Salazar KL. Sorrels SL. Evans FE. J. Org. Chem. 1992; 57: 2469
  • 77 Clarke PA. Nasir NM. Sellars PB. Peter AM. Lawson CA. Burroughs JL. Org. Biomol. Chem. 2016; 14: 6840
  • 78 Ohmori K. Suzuki T. Miyazawa K. Nishiyama S. Yamamura S. Tetrahedron Lett. 1993; 34: 4981
  • 79 Bhattacharjee A. De Brabander JK. Tetrahedron Lett. 2000; 41: 8069
  • 80 Ramnauth J. Poulin O. Bratovanov SS. Rakhit S. Maddaford SP. Org. Lett. 2001; 3: 2571
  • 81 Kumaraswamy G. Ramakrishna G. Naresh P. Jagadeesh B. Sridhar B. J. Org. Chem. 2009; 74: 8468
  • 82 Edwards HJ. Goggins S. Frost CG. Molecules 2015; 20: 6153
  • 83 Anada M. Washio T. Watanabe Y. Takeda K. Hashimoto S. Eur. J. Org. Chem. 2010; 6850
  • 84 Schmidt B. Chem. Commun. 2003; 1656
  • 85 Schmidt B. Hölter F. Chem. Eur. J. 2009; 15: 11948
  • 86 Schmidt B. Hölter F. Kelling A. Schilde U. J. Org. Chem. 2011; 76: 3357
  • 87 Li Z. Ip FC. F. Ip NY. Tong R. Chem. Eur. J. 2015; 21: 11152
  • 88 Li Z. Tong R. Synthesis 2016; 48: 1630
  • 89 Li Z. Tong R. J. Org. Chem. 2017; 82: 1127
    • 90a Li Z. Tong R. J. Org. Chem. 2016; 81: 4847
    • 90b Zhu L. Song L. Tong R. Org. Lett. 2012; 14: 5892
  • 91 Li Z. Leung T.-F. Tong R. Chem. Commun. 2014; 50: 10990
  • 92 Uenishi J. i. Ohmi M. Ueda A. Tetrahedron: Asymmetry 2005; 16: 1299
  • 93 Kawai N. Lagrange J.-M. Ohmi M. Uenishi J. i. J. Org. Chem. 2006; 71: 4530
  • 94 Kawai N. Hande SM. Uenishi J. i. Tetrahedron 2007; 63: 9049
  • 95 Uenishi J. i. Ohmi M. Angew. Chem. Int. Ed. 2005; 44: 2756
  • 96 Palimkar SS. Uenishi J. i. Ii H. J. Org. Chem. 2012; 77: 388
  • 97 Tino J. Lewis M. Kishi Y. Heterocycles 1987; 25: 97
  • 98 Williams DR. Kiryanov AA. Emde U. Clark MP. Berliner MA. Reeves JT. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 12058
  • 99 Williams DR. Plummer SV. Patnaik S. Tetrahedron 2011; 67: 5083
  • 100 Baldwin JE. J. Chem. Soc., Chem. Commun. 1976; 734
  • 101 Nicolaou KC. Papahatjis DP. Claremon DA. Magolda RL. Dolle RE. J. Org. Chem. 1985; 50: 1440
  • 102 Cywin CL. Kallmerten J. Tetrahedron Lett. 1993; 34: 1103
    • 103a Smith AB. III. Jurica JA. Walsh SP. Org. Lett. 2008; 10: 5625
    • 103b An C. Jurica JA. Walsh SP. Hoye AT. Smith AB. III. J. Org. Chem. 2013; 78: 4278
    • 104a Watanabe T. Imaizumi T. Chinen T. Nagumo Y. Shibuya M. Usui T. Kanoh N. Iwabuchi Y. Org. Lett. 2010; 12: 1040
    • 104b Uesugi S.-i. Watanabe T. Imaizumi T. Ota Y. Yoshida K. Ebisu H. Chinen T. Nagumo Y. Shibuya M. Kanoh N. Usui T. Iwabuchi Y. J. Org. Chem. 2015; 80: 12333
  • 105 McDonald FE. Wei X. Org. Lett. 2002; 4: 593
  • 106 Kanemoto M. Murata M. Oishi T. J. Org. Chem. 2009; 74: 8810
  • 107 Nicolaou K. Seitz S. Sipio W. Blount J. J. Am. Chem. Soc. 1979; 101: 3884
  • 108 Shangguan N. Kiren S. Williams LJ. Org. Lett. 2007; 9: 1093
  • 109 Nakata T. Schmid G. Vranesic B. Okigawa M. Smith-Palmer T. Kishi Y. J. Am. Chem. Soc. 1978; 100: 2933
  • 110 Nicolaou K. Magolda R. Sipio W. Barnette W. Lysenko Z. Joullie M. J. Am. Chem. Soc. 1980; 102: 3784
  • 111 Fettes A. Carreira EM. J. Org. Chem. 2003; 68: 9274
  • 112 Kühnert SM. Maier ME. Org. Lett. 2002; 4: 643
  • 113 Jung Y.-H. Kim Y.-J. Lee J. Tae J. Chem. Asian. J. 2007; 2: 656
  • 115 Hu X.-H. Liu F. Loh T.-P. Org. Lett. 2009; 11: 1741
  • 116 Parida BB. Lysenko IL. Cha JK. Org. Lett. 2012; 14: 6258
  • 117 Lee HG. Lysenko IL. Cha JK. Angew. Chem. Int. Ed. 2007; 46: 3326
  • 118 Mulzer J. Meyer F. Buschmann J. Luger P. Tetrahedron Lett. 1995; 36: 3503
    • 119a McDonald FE. Towne TB. J. Am. Chem. Soc. 1994; 116: 7921
    • 119b Brown RC. Kocienski PJ. Synlett 1994; 415
    • 119c Carlsen PH. J. Katsuki T. Martin VS. Sharpless KB. J. Org. Chem. 1981; 46: 3936
    • 119d Sinha SC. Sinha A. Yazbak A. Keinan E. J. Org. Chem. 1996; 61: 7640
    • 119e Kennedy RM. Tang S. Tetrahedron Lett. 1992; 33: 3729
  • 120 McDonald FE. Singhi AD. Tetrahedron Lett. 1997; 38: 7683
  • 121 Piccialli V. Tetrahedron Lett. 2000; 41: 3731
  • 122 Kim J. Jeong W. Rhee YH. Org. Lett. 2017; 19: 242
    • 123a Rainier JD. Synthesis of Natural Products Containing Medium-Size Oxygen Heterocycles by Ring-Closing Alkene Metathesis. In Metathesis in Natural Product Synthesis. Cossy J. Arseniyadis S. Meyer C. Wiley-VCH; Weinheim: 2010: 87-127
    • 123b Majumdar KC. RSC Adv. 2011; 1: 1152
  • 124 Crimmins MT. Diaz CJ. Emmitte KA. Heterocycles 2004; 62: 179
  • 125 Burke SD. Armistead DM. Fevig JM. Tetrahedron Lett. 1985; 26: 1163
    • 126a Marmsäter FP. Vanecko JA. West FG. Tetrahedron 2002; 58: 2027
    • 126b Marmsäter FP. West FG. J. Am. Chem. Soc. 2001; 123: 5144
  • 127 Wang H. Shuhler BJ. Xian M. Synlett 2008; 2651