Synlett 2018; 29(02): 148-156
DOI: 10.1055/s-0036-1588582
account
© Georg Thieme Verlag Stuttgart · New York

Interrupted Pummerer Reaction in Latent/Active Glycosylation

Lingkui Meng
a  Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
,
Jing Zeng
a  Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
,
a  Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China
b  Institute of Brain Research, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei, 430030, P. R. of China   Email: [email protected]
› Author Affiliations
We thank the National Natural Science Foundation of China (21272082, 21402055, 21672077, 21472054), the State Key ­Laboratory of Bio-­organic and Natural Products Chemistry (SKLBNPC13425), the Natural Science Funds of Hubei Province for Distinguished Young Scholars (2015CFA035), the Wuhan Creative Talent Development Fund, ­‘Thousand Talents Program’ Young Investigator Award, and Huazhong University of Science and Technology for support.
Further Information

Publication History

Received: 29 July 2017

Accepted after revision: 11 September 2017

Publication Date:
20 October 2017 (online)


In memory of Professor Shuzheng Zhang

Abstract

A latent/active glycosylation strategy is efficient for rapid ­assembly of oligosaccharides. We recently developed novel OPTB/OPSB and SPTB/SPSB glycosides as two pairs of latent/active glycosyl donors. The active OPSB and SPSB glycosyl donors are efficiently activated by Tf2O via an interrupted Pummerer reaction mechanism. In this account, the design, developments, mechanism studies and applications of these new glycosylation methodologies are described.

1 Introduction

2 Conceiving Ideas

3 Synthesis of OPSB and SPSB Glycosides

4 Substrate Scope

5 Application in the Synthesis of Natural Products

6 Conclusion

 
  • References

    • 1a Boons G.-J. Tetrahedron 1996; 52: 1095
    • 1b Smoot JT. Demchenko AV. Adv. Carbohydr. Chem. Biochem. 2009; 62: 161
    • 1c Zhu X. Schmidt RR. Angew. Chem. Int. Ed. 2009; 48: 1900
    • 1d Kaeothip S. Demchenko AV. Carbohydr. Res. 2011; 346: 1371
    • 1e Boltje TJ. Buskas T. Boons G.-J. Nat. Chem. 2009; 1: 611
    • 1f Yang Y. Zhang X. Yu B. Nat. Prod. Rep. 2015; 32: 1331
  • 2 Roy R. Andersson FO. Letellier M. Tetrahedron Lett. 1992; 33: 6053
  • 3 Fraser-Reid B. Udodong UE. Wu Z. Ottosson H. Merritt JR. Rao CS. Roberts C. Madsen R. Synlett 1992; 927
  • 4 Boons G.-J. Isles S. Tetrahedron Lett. 1994; 35: 3593
  • 5 Kim KS. Kim JH. Lee YJ. Lee YJ. Park J. J. Am. Chem. Soc. 2001; 123: 8477
  • 6 Huang L. Wang Z. Huang X. Chem. Commun. 2004; 1960
  • 7 Wang P. Haldar P. Wang Y. Hu H. J. Org. Chem. 2007; 72: 5870
  • 8 Hasty SJ. Kleine MA. Demchenko AV. Angew. Chem. Int. Ed. 2011; 50: 4197
  • 9 Chen X. Shen D. Wang Q. Yang Y. Yu B. Chem. Commun. 2015; 51: 13957
  • 10 Cremlyn RJ. An Introduction to Organosulfur Chemistry . John Wiley & Sons; Chichester: 1996: 63-79

    • Selected references:
    • 11a Pummerer R. Chem. Ber. 1909; 42: 2282
    • 11b Pummerer R. Chem. Ber. 1910; 43: 1401
    • 11c Bur SK. Padwa A. Chem. Rev. 2004; 104: 2401
    • 11d Akai S. Kita Y. Recent Advances in Pummerer Reactions. In Topics in Current Chemistry: Sulfur-Mediated Rearrangements I. Schaumann E. Springer-Verlag; Berlin: 2007. 274, 35
    • 11e Smith LH. S. Coote SC. Sneddon HF. Procter DJ. Angew. Chem. Int. Ed. 2010; 49: 5832

      Selected references:
    • 12a Pfitzner KE. Moffatt JG. J. Am. Chem. Soc. 1963; 85: 3027
    • 12b Epstein WW. Sweat FW. Chem. Rev. 1967; 67: 247

      Selected references:
    • 13a Corey EJ. Kim CU. J. Am. Chem. Soc. 1972; 94: 7586
    • 13b Mancuso AJ. Huang S.-L. Swern D. J. Org. Chem. 1978; 43: 2480
    • 13c Omura K. Swern D. Tetra­hedron 1978; 34: 1651
    • 13d Mancuso AJ. Brownfain DS. Swern D. J. Org. Chem. 1979; 44: 4148
    • 13e Mancuso AJ. Swern D. ­Synthesis 1981; 165
    • 13f Tidwell TT. Synthesis 1990; 857
  • 14 Kahne D. Walker S. Cheng Y. Van Engen D. J. Am. Chem. Soc. 1989; 111: 6881
  • 15 Crich D. Sun S. J. Org. Chem. 1996; 61: 4506
  • 16 Garcia BA. Poole JL. Gin DY. J. Am. Chem. Soc. 1997; 119: 7597
  • 17 Di Bussolo V. Kim Y.-J. Gin DY. J. Am. Chem. Soc. 1998; 120: 13515
  • 18 Shu P. Yao W. Xiao X. Sun J. Zhao X. Zhao Y. Xu Y. Tao J. Yao G. Zeng J. Wan Q. Org. Chem. Front. 2016; 3: 177
  • 19 Shu P. Xiao X. Zhao Y. Xu Y. Yao W. Tao J. Wang H. Yao G. Lu Z. Zeng J. Wan Q. Angew. Chem. Int. Ed. 2015; 54: 14432
  • 20 Xiao X. Zhao Y. Shu P. Zhao X. Liu Y. Sun J. Zhang Q. Zeng J. Wan Q. J. Am. Chem. Soc. 2016; 138: 13402
  • 21 Zeng J. Sun G. Yao W. Zhu Y. Wang R. Cai L. Liu K. Zhang Q. Liu X.-W. Wan Q. Angew. Chem. Int. Ed. 2017; 56: 5227
  • 22 Shu P. Zeng J. Tao J. Zhao Y. Yao G. Wan Q. Green Chem. 2015; 17: 2545
  • 23 Xu Y. Zhang Q. Xiao Y. Wu P. Chen W. Song Z. Xiao X. Meng L. Zeng J. Wan Q. Tetrahedron Lett. 2017; 58: 2381

    • Bz was used as a protecting group instead of Ac to avoid the acyl transfer side reactions:
    • 24a Kovác P. Carbohydr. Res. 1986; 153: 237
    • 24b Nukada T. Berces A. Whitfield DM. J. Org. Chem. 1999; 64: 9030
    • 24c Deng S. Yu B. Xie J. Hui Y. J. Org. Chem. 1999; 64: 7265
    • 24d Xiong D. Zhang L. Ye X. Adv. Synth. Catal. 2008; 350: 1696
    • 24e Xiong D. Yang A. Yu Y. Ye X. Tetrahedron Lett. 2015; 56: 211
    • 25a Zhou B.-N. Bahler BD. Hofmann GA. Mattern MR. Johnson RK. Kingston DG. I. J. Nat. Prod. 1998; 61: 1410
    • 25b Zhang F. Yang Y.-N. Song X.-Y. Shao S.-Y. Feng Z.-M. Jiang J.-S. Li L. Chen N.-H. Zhang P.-C. J. Nat. Prod. 2015; 78: 2390
    • 26a Sugaya K. Hashimoto F. Ono M. Ito Y. Masuoka C. Nohara T. Food Sci. Technol. Int. 1998; 4: 278
    • 26b Li Y. Chen Z. Feng Z. Yang Y. Jiang J. Zhang P. Carbohydr. Res. 2012; 348: 42