Synlett 2017; 28(20): 2777-2782
DOI: 10.1055/s-0036-1588583
letter
© Georg Thieme Verlag Stuttgart · New York

Radical Stabilization Algorithm as a Predictive Tool for Novel and Reported Noncanonical Thiele’s Acid Analogues

Jun Chen, Lingxiao Lu, Jeremy E. Wulff*
  • Department of Chemistry, University of Victoria, Victoria, BC, V8W 3V6, Canada   Email: wulff@uvic.ca
This work was supported by the National Science and Engineering ­Research Council of Canada (NSERC), and by the Michael Smith Foundation for Health Research.
Further Information

Publication History

Received: 25 July 2017

Accepted after revision: 08 September 2017

Publication Date:
06 October 2017 (eFirst)

This paper is dedicated to Professor Victor Snieckus, in honour of his 80th birthday

Abstract

We recently showed that a simple radical-stabilization algorithm outperformed traditional frontier-molecular orbital methods for rationalizing the outcome of the venerable Thiele’s acid (or ester) Diels–Alder dimerization. In the present Communication, we describe a novel noncanonical Thiele-type dimerization of a cyclopentadiene phosphine oxide, and show that when steric factors are taken into account the ­radical-stabilization method once again correctly rationalizes the regio­chemical outcome for the reaction. We further show that the method appears to be general for all known Thiele- and half-Thiele dimerization events.

Supporting Information

 
  • References and Notes

    • 1a Corey EJ. Angew. Chem. Int. Ed. 2002; 41: 1650
    • 1b Nicolaou KC. Snyder SA. Montagnon T. Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
    • 1c Diels O. Alder K. Justus Liebigs Ann. Chem. 1928; 460: 98
    • 2a Blackman ML. Royzen M. Fox JM. J. Am. Chem. Soc. 2008; 130: 13518
    • 2b Inglis AJ. Sinnwell S. Stenzel MH. Barner-Kowollik C. Angew. Chem. Int. Ed. 2009; 48: 2411
    • 2c Laure CB. Marion R. Marie-Helene L. Curr. Org. Chem. 2016; 20: 2358
  • 3 Marchand AP. Zhao D. Ngooi T.-K. Vidyasagar V. Watson WH. Kashyap RP. Tetrahedron 1993; 49: 2613
    • 4a Murphy EB. Bolanos E. Schaffner-Hamann C. Wudl F. Nutt SR. Auad ML. Macromolecules 2008; 41: 5203
    • 4b Chen J. Burns FP. Moffitt MG. Wulff JE. ACS Omega 2016; 1: 532
    • 4c Fleet EJ. Zhang Y. Hayes SA. Smith PJ. J. J. Mater. Chem. A 2015; 3: 2283
  • 5 Chen J. Sun X. Oliver AG. Wulff JE. Can. J. Chem. 2016; 95: 234
  • 6 Chen J. Kilpatrick B. Oliver AG. Wulff JE. J. Org. Chem. 2015; 80: 8979
  • 8 Deslongchamps G. Deslongchamps P. Tetrahedron 2013; 69: 6022
  • 9 Chen J. Wulff JE. Org. Biomol. Chem. 2016; 14: 10170
  • 10 We acknowledge that it seems paradoxical (and perhaps mechanistically indefensible) to evaluate the delocalization-dependent stability of resonance structures which must by definition be electronically restricted. But the algorithm described in Figure S7 nonetheless provides some useful measure of which centers would be more acomodating of any spin density which might exist in the transition state.
  • 11 Dewar MJ. S. Olivella S. Stewart JJ. P. J. Am. Chem. Soc. 1986; 108: 5771
  • 12 Staroverov VN. Davidson ER. J. Am. Chem. Soc. 2000; 122: 186
  • 13 Firestone RA. J. Org. Chem. 1972; 37: 2181
  • 14 Liu Y. Spingler B. Schmutz P. Alberto R. J. Am. Chem. Soc. 2008; 130: 1554
  • 15 Typical Procedure for the Synthesis of 7a A flame-dried round-bottom flask under argon atmosphere was charged with diphenylphosphinic chloride (236 mg, 1 mmol) and THF (3 mL). To this solution was added sodium cyclopentadienylide (2 M in THF, 1 mmol) at 0 °C with stirring. After 30 min, the reaction was quenched by water, extracted with CH2Cl2, and dried over MgSO4. After the removal of solvent, the neat mixture was heated to 50 °C overnight. The resulting deep purple mixture was loaded onto a silica gel column and eluted with CH2Cl2/MeOH (20:1 to 10:1) to give 7a as a brown oil (159 mg, 60%). 1H NMR (500 MHz, CDCl3): δ = 7.80–7.84 (m, 2 H), 7.71–7.77 (m, 2 H), 7.47–7.59 (m, 7 H), 7.33–7.47 (m, 7 H), 7.29 (td, J = 7.7, 2.7 Hz, 2 H), 6.19–6.24 (m, 2 H), 5.38 (dd, J = 10.5, 2.0 Hz, 1 H), 3.91–3.97 (m, 1 H), 3.06–3.10 (m, 1 H), 2.97–3.03 (m, 1 H), 2.50 (ddd, J = 17.6, 10.4, 1.7 Hz, 1 H), 1.89 (d, J = 17.6 Hz, 1 H), 1.85 (dd, J = 8.7, 1.7 Hz, 1 H), 1.68 (d, J = 8.7 Hz, 1 H). 13C NMR (125 MHz, CDCl3): δ = 146.5 (d, J = 12.9 Hz), 140.6 (d, J = 99.5 Hz), 135.4 (d, J = 11.2 Hz), 133.7 (d, J = 4.7 Hz), 132.6 (d, J = 86.6 Hz), 132.2–131.2 (m), 128.6–128.4 (m), 58.1 (d, J = 16.2 Hz), 57.7 (d, J = 87.7 Hz), 52.6, 46.9 (d, J = 13.9 Hz), 43.7 (dd, J = 9.4, 5.6 Hz), 34.7 (d, J = 11.2 Hz). 31P NMR (202 MHz, CDCl3): δ = 29.9, 23.6. IR (film): 3056, 2929, 1607, 1436, 1176, 1116 cm–1. ESI-HRMS: m/z calcd for [M + Na]+ C34H30O2P2Na: 555.1613; found: 555.1612.
    • 16a Black K. Liu P. Xu L. Doubleday C. Houk KN. Proc. Natl. Acad. Sci. 2012; 109: 12860
    • 16b Wannere CS. Paul A. Herges R. Houk KN. Schaefer HF. Von Ragué Schleyer P. J. Comput. Chem. 2007; 28: 344
  • 17 Consideration of plastic models reveals that the vinyl protons in TS3 suffer no significant interactions with each other, or with the backbone carbon atoms.
  • 18 Bridges AJ. Fischer JW. J. Chem. Soc., Perkin Trans. 1 1983; 2359
  • 19 Hartke K. Jung MH. Zerbe H. Kämpchen T. Liebigs Ann. Chem. 1986; 1986: 1268
    • 20a Peters D. J. Chem. Soc. 1961; 1037
    • 20b Alder K. Flock FH. Hausweiler A. Reeber R. Chem. Ber. 1954; 87: 1752
  • 21 Spino C. Pesant M. Dory Y. Angew. Chem. Int. Ed. 1998; 37: 3262
  • 22 Spino C. Crawford J. Cui Y. Gugelchuk M. J. Chem. Soc., Perkin Trans. 2 1998; 1499