Synthesis
DOI: 10.1055/s-0036-1588584
paper
© Georg Thieme Verlag Stuttgart · New York

Oxidative Conversion of Sulfonyl Indoles into 3-Alkylidene-2-oxindoles under Flow Chemical Conditions

Marino Petrini, Elena Chiurchiù, Federico V. Rossi, Alessandro Palmieri*
  • Green Chemistry Group, School of Sciences and Technology, Chemistry Division, University of Camerino, Via S. Agostino n. 1, 62032 Camerino (MC), Italy   Email: alessandro.palmieri@unicam.it
Further Information

Publication History

Received: 30 July 2017

Accepted after revision: 12 September 2017

Publication Date:
04 October 2017 (eFirst)

Abstract

Sulfonyl indoles were converted into 3-alkylidene-2-oxindoles using NCS as the sole reagent under flow chemical conditions. The conjugated oxindole derivatives were generally obtained as E stereoisomers in moderate to satisfactory yields. The transformation entails the oxidation of the indole ring by NCS followed by elimination of arylsulfinic acid in order to install the exocyclic unsaturation.

Supporting Information

 
  • References

    • 1a Yu B. Yu D.-Q. Liu H.-M. Eur. J. Med. Chem. 2015; 97: 673
    • 1b Santos MM. M. Tetrahedron 2014; 70: 9735
    • 1c Xia M. Ma R.-Z. J. Heterocycl. Chem. 2014; 51: 539
    • 1d Hong L. Wang R. Adv. Synth. Catal. 2013; 355: 1023
    • 1e Ball-Jones NR. Badillo JJ. Franz AK. Org. Biomol. Chem. 2012; 10: 5165
    • 2a Kaur M. Singh M. Chadha N. Silakari O. Eur. J. Med. Chem. 2016; 123: 858
    • 2b Papaetis GS. Syrigos KN. Biodrugs 2009; 23: 377
    • 3a Miao B. Zheng Y. Wu P. Li S. Ma S. Adv. Synth. Catal. 2017; 359: 1691
    • 3b Lin W.-J. Shia K.-S. Song J.-S. Wu M.-H. Li W.-T. Org. Biomol. Chem. 2016; 14: 220
    • 3c Yang X.-H. Li K. Song R.-J. Li J.-H. Eur. J. Org. Chem. 2014; 616
  • 4 Jiang T.-S. Tang R.-Y. Zhang X.-G. Li X.-H. Li J.-H. J. Org. Chem. 2009; 74: 8834
  • 5 Kumar MS. L. Manna SK. Majia S. Panda G. Org. Biomol. Chem. 2017; 15: 1762
    • 6a Gangarapu K. Thumma G. Manda S. Jallapally A. Jarapula R. Rekulapally S. Med. Chem. Res. 2017; 26: 819
    • 6b Song Z. Chen C.-P. Liu J. Wen X. Sun H. Yuan H. Eur. J. Med. Chem. 2016; 124: 809
    • 6c Kleeblatt D. Becker M. Plötz M. Schönherr M. Villinger A. Hein M. Eberle J. Kunz M. Rahmanad Q. Langer P. RSC Adv. 2015; 5: 20769
    • 7a Chiou C.-T. Lee W.-C. Liao J.-H. Cheng J.-J. Lin L.-C. Chen C.-Y. Song J.-S. Wu M.-H. Shia K.-S. Li W.-T. Eur. J. Med. Chem. 2015; 98: 1
    • 7b Maigali SS. El-Hussieny M. Soliman FM. J. Heterocycl. Chem. 2015; 52: 15
    • 8a Delong W. Lanying W. Yongling W. Shuang S. Juntao F. Xing Z. Eur. J. Med. Chem. 2017; 130: 286
    • 8b Guo J. Zhu M. Wu T. Hao C. Wang K. Yan Z. Huang W. Wang J. Zhao D. Cheng M. Bioorg. Med. Chem. 2017; 25: 3500
    • 8c Patel P. Borah G. Chem. Commun. 2017; 53: 443
    • 8d Pillaiyar T. Köse M. Sylvester K. Weighardt H. Thimm D. Borges G. Förster I. von Kügelgen I. Müller CE. J. Med. Chem. 2017; 60: 3636
    • 8e Yang T. Ng WH. Chen H. Chomchopbun K. Huynh TH. Go ML. Kon OL. ACS Med. Chem. Lett. 2016; 7: 807
    • 8f Ngai MH. So CL. Sullivan MB. Ho HK. Chai CL. L. ChemMedChem 2016; 11: 72
    • 9a Journigan VB. Polgar WE. Khroyan TV. Zaveri NT. Bioorg. Med. Chem. 2014; 22: 2508
    • 9b Dua T.-P. Zhu G.-G. Zhou J. Lett. Org. Chem. 2012; 9: 225
    • 10a Liu Y. Zhang L. Jia Y. Tetrahedron Lett. 2012; 53: 684
    • 10b Trost BM. Zhang Y. Chem. Eur. J. 2011; 17: 2916
    • 10c Suárez-Castillo OR. Meléndez-Rodríguez M. Castelán-Duarte LE. Sánchez-Zavala M. Rivera-Becerril E. Morales-Ríos MS. Joseph-Nathan P. Tetrahedron: Asymmetry 2009; 20: 2374
    • 10d Suárez-Castillo OR. Sánchez-Zavala M. Meléndez-Rodríguez M. Castelán-Duarte LE. Morales-Ríos MS. Joseph-Nathan P. Tetrahedron 2006; 62: 3040
    • 10e Lazzaro F. Crucianelli M. De Angelis F. Neri V. Saladino R. Tetrahedron Lett. 2004; 45: 9237

      For some recent examples see:
    • 11a Sun X. Zhao X.-J. Wu B. Asian J. Org. Chem. 2017; 6: 690
    • 11b Li G. Huang L. Xu J. Sun W. Xie J. Hong L. Wang R. Adv. Synth. Catal. 2016; 358: 2873
    • 11c Jiang X. Zhang F. Yang J. Yu P. Yi P. Sun Y. Wang Y. Adv. Synth. Catal. 2016; 358: 3938
    • 11d Xu D. Sun W.-W. Xie Y. Liu J.-K. Liu B. Zhou Y. Wu B. J. Org. Chem. 2016; 81: 11081
    • 11e Wang H. Liu D. Chen H. Li J. Wang DZ. Tetrahedron 2015; 71: 7073

      Reviews:
    • 12a Palmieri A. Petrini M. Chem. Rec. 2016; 16: 1353
    • 12b Palmieri A. Petrini M. Shaikh RR. Org. Biomol. Chem. 2010; 8: 1259

    • For some very recent papers see:
    • 12c Gu Z. Tang Y. Jiang G.-F. J. Org. Chem. 2017; 82: 5441
    • 12d Xing Z.-H. Zhang Y. Wang Y. Xu X.-P. Ji S.-J. Tetrahedron Lett. 2017; 58: 1094
    • 12e Sahu S. Banerjee A. Maji MS. Org. Lett. 2017; 19: 464
    • 13a Nyffeler PT. Durón SG. Burkart MD. Vincent SP. Wong C.-H. Angew. Chem. Int. Ed. 2005; 44: 192
    • 13b Seki T. Fujiwara T. Takeuchi Y. J. Fluorine Chem. 2011; 132: 181
    • 14a Wanner MJ. Ingemann S. van Maarseveen JH. Hiemstra H. Eur. J. Org. Chem. 2013; 1100
    • 14b Rajeswaran WG. Labroo RB. Cohen LA. J. Org. Chem. 1999; 64: 1369

      Sulfonyl indoles 3 are prepared by a three-component condensation of indoles with aldehydes and p-toluenesulfinic acid under acidic conditions:
    • 16a Ballini R. Palmieri A. Petrini M. Torregiani E. Org. Lett. 2006; 8: 4093
    • 16b Palmieri A. Petrini M. J. Org. Chem. 2007; 72: 1863
  • 17 Yanada R. Obika S. Kobayashi Y. Inokuma T. Oyama M. Yanada K. Takemoto Y. Adv. Synth. Catal. 2005; 347: 1632
  • 18 Kobayashi Y. Kamisaki H. Yanada K. Yanada R. Takemoto Y. Tetrahedron Lett. 2005; 46: 7549
  • 19 Yuanyuan L. Dongmei Y. Kun L. Fengtao T. Fang X. Wanbin Z. Tetrahedron 2011; 67: 8445