Synlett 2016; 27(18): 2515-2524
DOI: 10.1055/s-0036-1588611
synpacts
© Georg Thieme Verlag Stuttgart · New York

Design and Application of 3-Alkyl-2-vinylindoles in Brønsted Acid Catalyzed Reactions

Guang-Jian Mei
Jiangsu Key Laboratory of Green Synthetic for Functional Materials, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn
,
Feng Shi*
Jiangsu Key Laboratory of Green Synthetic for Functional Materials, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. of China   Email: fshi@jsnu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 11 August 2016

Accepted after revision: 12 September 2016

Publication Date:
30 September 2016 (online)

Abstract

Our group has designed and developed 3-alkyl-2-vinylindoles as a new type of vinylindoles, which have displayed versatile reactivity in Brønsted acid catalyzed reactions. For instance, this class of ­vinylindoles can act as 2C building blocks in [n+2] cyclizations, as 2,3-disubstituted indoles in dearomatizations, and as NCC building blocks in [3+2] cyclodimerizations. This article summarizes the main contributions of our group in this research field.

1 Introduction

2 As 2C building blocks in [n+2] cyclizations

3 As 2,3-disubstituted indoles in dearomatization

4 As NCC building blocks in [3+2] cyclodimerizations

5 Summary and outlook

 
  • References


    • For some reviews, see:
    • 1a Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 1b Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 1c Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489

      For some reviews, see:
    • 2a You S.-L, Zeng Q, Cai M. Chem. Soc. Rev. 2009; 38: 2190
    • 2b Zeng M, You S.-L. Synlett 2010; 1289
    • 2c Bartoli G, Bencivenni G, Dalpozzo R. Chem. Soc. Rev. 2010; 39: 4449
    • 2d Dalpozzo R. Chem. Soc. Rev. 2015; 44: 742
    • 2e Wu H, He Y.-P, Shi F. Synthesis 2015; 47: 1990

      For some prominent examples using 2-vinylindoles as 4C building blocks, see:
    • 3a Eitel M, Pindur U. J. Org. Chem. 1990; 55: 5368
    • 3b Wiest O, Steckhan E. Angew. Chem. Int. Ed. 1993; 32: 901
    • 3c Jones SB, Simmons B, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 13606
    • 3d Chen C.-B, Wang X.-F, Cao Y.-J, Cheng H.-G, Xiao W.-J. J. Org. Chem. 2009; 74: 3532
    • 3e Wang X.-F, Chen J.-R, Cao Y.-J, Cheng H.-G, Xiao W.-J. Org. Lett. 2010; 12: 1140
    • 3f Zheng C.-W, Lu Y.-P, Zhang J.-K, Chen X.-K, Chai Z, Ma W.-Y, Zhao G. Chem. Eur. J. 2010; 16: 5853
    • 3g Cao Y.-J, Cheng H.-G, Lu L.-Q, Zhang J.-J, Cheng Y, Chen J.-R, Xiao W.-J. Adv. Synth. Catal. 2011; 353: 617
    • 3h Wang X.-F, Peng L, An J, Li C, Yang Q.-Q, Lu L.-Q, Gu F.-L, Xiao W.-J. Chem. Eur. J. 2011; 17: 6484
    • 3i Pirovano V, Decataldo L, Rossi E, Vicente R. Chem. Commun. 2013; 49: 3594
    • 3j Tian X, Hofmann N, Melchiorre P. Angew. Chem. Int. Ed. 2014; 53: 2997
    • 3k Wang Y, Tu M.-S, Yin L, Sun M, Shi F. J. Org. Chem. 2015; 80: 3223

      For some representative examples on 3-vinylindole-involving [4+2] cyclizations, see:
    • 4a Pindur U, Otto C. Tetrahedron 1992; 48: 3515
    • 4b Lambert JD, Porter QN. Aust. J. Chem. 1981; 34: 1483
    • 4c Pindur U, Kim MH, Rogge M, Massa W, Molinier M. J. Org. Chem. 1992; 57: 910
    • 4d Gioia C, Hauville A, Bernardi L, Fini F, Ricci A. Angew. Chem. Int. Ed. 2008; 47: 9236
    • 4e Tan B, Hernández-Torres G, Barbas CF. III. J. Am. Chem. Soc. 2011; 133: 12354
    • 4f Cowell J, Abualnaja M, Morton S, Linder R, Buckingham F, Waddell PG, Probert MR, Hall MJ. RSC Adv. 2015; 5: 16125
    • 5a Enders D, Jeanty M, Bats JW. Synlett 2009; 3175
    • 5b Caruana L, Fochi M, Franchini MC, Ranieri S, Mazzanti A, Bernardi L. Chem. Commun. 2014; 50: 445

      For some reviews, see:
    • 6a Palmieri A, Petrini M, Shaikh RR. Org. Biomol. Chem. 2010; 8: 1259
    • 6b Chen L, Yin X.-P, Wang C.-H, Zhou J. Org. Biomol. Chem. 2014; 12: 6033
    • 6c Chen Y, Wang L, Xiao J. Asian J. Org. Chem. 2014; 3: 1036

      For some early reports on enantioselective substitutions of 3-indolylmethanols, see:
    • 7a Guo Q.-X, Peng Y.-G, Zhang J.-W, Song L, Feng Z, Gong L.-Z. Org. Lett. 2009; 11: 4620
    • 7b Sun F.-L, Zeng M, Gu Q, You S.-L. Chem. Eur. J. 2009; 15: 8709
    • 7c Cozzi PG, Benfatti F, Zoli L. Angew. Chem. Int. Ed. 2009; 48: 1313

      For enantioselective [3+3] cyclizations of 3-indolylmethanols, see:
    • 8a Huang J, Luo S, Gong L.-Z. Acta Chim. Sin. 2013; 71: 879
    • 8b Shi F, Zhu R.-Y, Dai W, Wang C.-S, Tu S.-J. Chem. Eur. J. 2014; 20: 2597
    • 8c Dai W, Lu H, Li X, Shi F, Tu S.-J. Chem. Eur. J. 2014; 20: 11382
    • 9a For an enantioselective multistep [3+2] cyclization, see: Xu B, Guo Z.-L, Jin W.-Y, Wang Z.-P, Peng Y.-G, Guo Q.-X. Angew. Chem. Int. Ed. 2012; 51: 1059
    • 9b For a non-enantioselective [3+2] cyclization, see: Zhang C, Zhang L.-X, Qiu Y, Xu B, Zong Y, Guo Q.-X. RSC Adv. 2014; 4: 6916

      For some reviews, see:
    • 10a Akiyama T. Chem. Rev. 2007; 107: 5744
    • 10b Terada M. Chem. Commun. 2008; 35: 4097
    • 10c Terada M. Synthesis 2010; 1929
    • 10d Yu J, Shi F, Gong L.-Z. Acc. Chem. Res. 2011; 44: 1156
    • 10e Parmar D, Sugiono E, Raja S, Rueping M. Chem. Rev. 2014; 114: 9047
  • 11 Tan W, Li X, Gong Y.-X, Ge M.-D, Shi F. Chem. Commun. 2014; 50: 15901
  • 12 Shi F, Zhang H.-H, Sun X.-X, Liang J, Fan T, Tu S.-J. Chem. Eur. J. 2015; 21: 3465

    • For some recent reviews, see:
    • 13a Masson G, Lalli C, Benohoud M, Dagousset G. Chem. Soc. Rev. 2013; 42: 902
    • 13b Moyano A, Rios R. Chem. Rev. 2011; 111: 4703
    • 13c Bartók M. Chem. Rev. 2010; 110: 1663

      For some reviews, see:
    • 14a Pathak TP, Sigman MS. J. Org. Chem. 2011; 76: 9210
    • 14b Willis NJ, Bray CD. Chem. Eur. J. 2012; 18: 9160
    • 14c Wang Z, Sun J. Synthesis 2015; 3629
  • 15 Zhao J.-J, Sun S.-B, He S.-H, Wu Q, Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
  • 16 For a review, see: Jiang X.-X, Wang R. Chem. Rev. 2013; 113: 5515
  • 17 Dai W, Jiang X.-L, Tao J.-Y, Shi F. J. Org. Chem. 2016; 81: 185
  • 18 Zhao J.-J, Tang M, Zhang H.-H, Xu M.-M, Shi F. Chem. Commun. 2016; 52: 5953

    • For some recent reviews, see:
    • 19a Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
    • 19b Zhuo C.-X, Zheng C, You S.-L. Acc. Chem. Res. 2014; 47: 2558
    • 19c Liang X.-W, Zheng C, You S.-L. Chem. Eur. J. 2016; 22: 11918
  • 20 Zhang Y.-C, Zhao J.-J, Jiang F, Sun S.-B, Shi F. Angew. Chem. Int. Ed. 2014; 53: 13912
  • 21 Wang Y, Sun M, Yin L, Shi F. Adv. Synth. Catal. 2015; 357: 4031
  • 22 Yin L, Wang Y, Sun M, Shi F. Adv. Synth. Catal. 2016; 358: 1093

    • For limited examples using 2-vinylindoles as NCC building blocks, see:
    • 23a Gurtler C.-F, Blechert S, Steckhan E. Chem. Eur. J. 1997; 3: 447
    • 23b Enders D, Wang C, Yang X, Raabe G. Synlett 2011; 469
    • 23c Enders D, Greb A, Deckers K, Selig P, Merkens C. Chem. Eur. J. 2012; 18: 10226
    • 23d Ni Q, Zhang H, Grossmann A, Loh C.-J, Merkens C, Enders D. Angew. Chem. Int. Ed. 2013; 52: 13562
    • 23e Dethe D.-H, Erande R.-D, Ranjan A. J. Am. Chem. Soc. 2011; 133: 2864
    • 23f Dethe D.-H, Erande R.-D, Ranjan A. J. Org. Chem. 2013; 78: 10106
  • 24 Bera K, Schneider C. Chem. Eur. J. 2016; 22: 7074