Synlett 2017; 28(03): 289-305
DOI: 10.1055/s-0036-1588644
account
© Georg Thieme Verlag Stuttgart · New York

Thieme Chemistry Journals Awardees – Where Are They Now?
What’s Golden: Recent Advances in Organic Transformations Using Photoredox Gold Catalysis

Terry McCallum
Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada   Email: Louis.Barriault@uottawa.ca
,
Samantha Rohe
Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada   Email: Louis.Barriault@uottawa.ca
,
Louis Barriault*
Centre for Catalysis, Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, K1N 6N5, Canada   Email: Louis.Barriault@uottawa.ca
› Author Affiliations
Further Information

Publication History

Received: 09 September 2016

Accepted after revision: 12 October 2016

Publication Date:
17 November 2016 (online)


Abstract

Light-mediated photoredox transformations have become commonplace in contemporary catalysis research and design. Excited-state redox catalysts trigger photoinduced electron transfers (PET) through oxidative or reductive quenching modes, allowing access to one-electron variations of classic radical reactions and the discovery of new transformations in organic chemistry. Herein, the use of Au-based photoredox catalysts containing powerful redox properties along with the emergence of dual catalyzed organic transformations involving photoredox catalysis and Au complexes for the Au(I)/Au(III) redox couple without use of stoichiometric oxidants will be discussed.

1 Principles of Photochemistry and Gold

2 Photoredox Transformations with Dimeric Gold Complexes

3 Dual Catalysis Involving Au(I)/Au(III) Redox Cycles

4 Concluding Remarks

 
  • References

  • 1 Hashmi AS. K. Chem. Rev. 2007; 107: 3180
    • 2a Hopkinson MN, Gee AD, Gouverneur V. Chem. Eur. J. 2011; 17: 8248
    • 2b Wegner HA, Auzias M. Angew. Chem. Int. Ed. 2011; 50: 8236
    • 2c Zheng Z, Wang Z, Wang Y, Zhang L. Chem. Soc. Rev. 2016; 45: 4448

      For seminal description, characterization and theoretical studies of aurophilic interactions in polynuclear Au(I) complexes:
    • 3a Schmidbaur H, Wohlleben A, Schubert U, Frank A, Huttner G. Chem. Ber. 1977; 110: 2751
    • 3b Briant OE, Hall KP, Mingos DM. P. J. Organomet. Chem. 1982; 229: C5
    • 3c Shain J, Fackler JrJ. P. Inorg. Chim. Acta 1987; 131: 157
    • 3d Payne NC, Puddephatt RJ, Ravindranath R, Treurnicht I. Can. J. Chem. 1988; 66: 3176
    • 3e Che C.-M, Kwong H.-L, Yam VW.-W, Cho K.-C. J. Chem. Soc., Chem. Commun. 1989; 885
    • 3f Jaw HR. C, Savas MM, Mason WR. Inorg. Chem. 1989; 28: 4366
    • 3g Jaw HR. C, Savas MM, Rogers RD, Mason WR. Inorg. Chem. 1989; 28: 1028
    • 3h King C, Wang JC, Khan MN. I, Fackler JP. Inorg. Chem. 1989; 28: 2145
    • 3i Che C.-M, Kwong H.-L, Poon C.-K, Yam VW.-W. J. Chem. Soc., Dalton Trans. 1990; 3215
    • 3j Yam VW.-W, Lai T.-F, Che C.-M. J. Chem. Soc., Dalton Trans. 1990; 3747
    • 3k Pyykkö P, Zhao Y. Angew. Chem., Int. Ed. Engl. 1991; 30: 604
    • 3l Che C.-M, Yip H.-K, Yam VW.-W, Cheung P.-Y, Lai T.-F, Shieh S.-J, Peng S.-M. J. Chem. Soc., Dalton Trans. 1992; 427
    • 3m King C, Khan MN. I, Staples RJ, Fackler JP. Inorg. Chem. 1992; 31: 3236
    • 3n Li D, Che C.-M, Kwong H.-L, Yam VW.-W. J. Chem. Soc., Dalton Trans. 1992; 3325
    • 3o Forward JM, Assefa Z, Fackler JP. J. Am. Chem. Soc. 1995; 117: 9103
    • 3p Pyykkö P, Mendizabal F. Inorg. Chem. 1998; 37: 3018
    • 3q Fu W.-F, Chan K.-C, Miskowski VM, Che C.-M. Angew. Chem. Int. Ed. 1999; 38: 2783
    • 3r Leung KH, Phillips DL, Tse M.-C, Che C.-M, Miskowski VM. J. Am. Chem. Soc. 1999; 121: 4799
    • 3s Brandys M.-C, Jennings MC, Puddephatt RJ. J Chem. Soc., Dalton Trans. 2000; 4601
    • 3t Fu W.-F, Chan K.-C, Cheung K.-K, Che C.-M. Chem. Eur. J. 2001; 7: 4656
    • 3u Rawashdeh-Omary MA, Omary MA, Patterson HH, Fackler JP. J. Am. Chem. Soc. 2001; 123: 11237
    • 3v Zhang H.-X, Che C.-M. Chem. Eur. J. 2001; 7: 4887
    • 3w Leung KH, Phillips DL, Mao Z, Che C.-M, Miskowski VM, Chan C.-K. Inorg. Chem. 2002; 41: 2054
    • 3x Barnard PJ, Baker MV, Berners-Price SJ, Skelton BW, White AH. Dalton Trans. 2004; 1038
    • 3y Pan Q.-J, Zhang H.-X. J. Phys. Chem. A 2004; 108: 3650
    • 3z Che C.-M, Lai S.-W. Coord. Chem. Rev. 2005; 249: 1296
    • 3aa Mendizabal F, Olea-Azar C. Int. J. Quantum Chem. 2005; 103: 34
    • 3ab Mendizabal F, Olea-Azar C, Briones R. J. Mol. Struct. (Theochem) 2006; 764: 187
    • 3ac Yam VW. W, Chung-Chin Cheng E In Topics in Current Chemistry . Vol. 281. Balzani V, Campagna S. Springer; Berlin Heidelberg: 2007
    • 3ad Tong GS. M, Kui SC. F, Chao H.-Y, Zhu N, Che C.-M. Chem. Eur. J. 2009; 15: 10777
    • 3ae Cui G, Cao X.-Y, Fang W.-H, Dolg M, Thiel W. Angew. Chem. Int. Ed. 2013; 52: 10281
    • 3af Seki T, Sakurada K, Muromoto M, Ito H. Chem. Sci. 2015; 6: 1491
  • 4 Ma Y, Che C.-M, Chao H.-Y, Zhou X, Chan W.-H, Shen J. Adv. Mater. 1999; 11: 852
  • 5 Zou T, Lum CT, Lok C.-N, To W.-P, Low K.-H, Che C.-M. Angew. Chem. Int. Ed. 2014; 53: 5810
    • 6a Principles of Molecular Photochemistry: An Introduction . Turro NJ, Scaiano JC, Ramamurthy V. University Science Books; Sausalito: 2009
    • 6b Roundhill DM In Photochemistry and Photophysics of Metal Complexes . Fackler JP. Jr. Springer; New York: 1994
  • 7 Ma C, Chan CT.-L, To W.-P, Kwok W.-M, Che C.-M. Chem. Eur. J. 2015; 21: 13888
  • 8 McTiernan CD, Morin M, McCallum T, Scaiano JC, Barriault L. Catal. Sci. Technol. 2016; 6: 201
    • 10a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 10b Hopkinson MN, Sahoo B, Li J.-L, Glorius F. Chem. Eur. J. 2014; 20: 3874
    • 10c Pitre SP, McTiernan CD, Scaiano JC. Acc. Chem. Res. 2016; 49: 1320
    • 10d Pitre SP, McTiernan CD, Scaiano JC. ACS Omega 2016; 1: 66
    • 10e Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 10f Bengough WI, McIntosh SA, Thomson RA. M. Nature 1959; 184: 266
    • 10g Kuhn HJ, Braslavsky SE, Schmidt R. Pure Appl. Chem. 2004; 76: 2105
    • 10h Ismaili H, Pitre SP, Scaiano JC. Catal. Sci. Technol. 2013; 3: 935
    • 10i Majek M, Filace F, Jacobi von Wangelin A. Beilstein J. Org. Chem. 2014; 10: 981
    • 10j Pitre SP, Mctiernan CD, Vine W, DiPucchio R, Grenier M, Scaiano JC. Sci. Rep. 2015; 5: 16397
    • 10k Cismesia MA, Yoon TP. Chem. Sci. 2015; 6: 5426
    • 11a Radicals in Organic Synthesis . Renaud P, Sibi MP. Wiley-VCH; Weinheim: 2001
    • 11b Encyclopedia of Radicals in Chemistry, Biology and Materials . Vols. 1 and 2. Chatgilialoglu C, Studer A. Wiley; Chichester: 2012
    • 12a Fry AJ, Krieger RL. J. Org. Chem. 1976; 41: 54
    • 12b Rondinini S, Mussini PR, Muttini P, Sello G. Electrochim. Acta 2001; 46: 3245
    • 12c Roth HG, Romero NA, Nicewicz DA. Synlett 2016; 27: 714
  • 13 Revol G, McCallum T, Morin M, Gagosz F, Barriault L. Angew. Chem. Int. Ed. 2013; 52: 13342
  • 14 McCallum T, Slavko E, Morin M, Barriault L. Eur. J. Org. Chem. 2015; 81
  • 15 Kaldas SJ, Cannillo A, McCallum T, Barriault L. Org. Lett. 2015; 17: 2864
    • 16a McCallum T, Barriault L. Chem. Sci. 2016; 7: 4754

    • For seminal work:
    • 16b Minisci F, Bernardi R, Bertini F, Galli R, Perchinummo M. Tetrahedron 1971; 27: 3575
  • 17 Xie J, Li J, Weingand V, Rudolph M, Hashmi AS. K. Chem. Eur. J. 2016; 22: 12646
  • 18 Cannillo A, Schwantje TR, Bégin M, Barabé F, Barriault L. Org. Lett. 2016; 18: 2592
  • 19 Nzulu F, Telitel S, Stoffelbach F, Graff B, Morlet-Savary F, Lalevee J, Fensterbank L, Goddard J.-P, Ollivier C. Polym. Chem. 2015; 6: 4605
  • 20 Xie J, Zhang T, Chen F, Mehrkens N, Rominger F, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 2934
  • 21 Xie J, Shi S, Zhang T, Mehrkens N, Rudolph M, Hashmi AS. K. Angew. Chem. Int. Ed. 2015; 54: 6046
  • 22 Tran H, McCallum T, Morin M, Barriault L. Org. Lett. 2016; 18: 4308
  • 23 Zhang Q, Zhang Z.-Q, Fu Y, Yu H.-Z. ACS Catal. 2016; 6: 798
    • 24a Huang L, Rominger F, Rudolph M, Hashmi AS. K. Chem. Commun. 2016; 52: 6435
    • 24b Huang L, Rudolph M, Rominger F, Hashmi AS. K. Angew. Chem. Int. Ed. 2016; 55: 4808
  • 25 Tlahuext-Aca A, Hopkinson MN, Daniliuc CG, Glorius F. Chem. Eur. J. 2016; 22: 11587
  • 26 Sahoo B, Hopkinson MN, Glorius F. J. Am. Chem. Soc. 2013; 135: 5505
    • 27a Hopkinson MN, Sahoo B, Glorius F. Adv. Synth. Catal. 2014; 356: 2794

    • For β-hydride elimination processes with Au-based complexes:
    • 27b Rekhroukh F, Estevez L, Mallet-Ladeira S, Miqueu K, Amgoune A, Bourissou D. J. Am. Chem. Soc. 2016; 138: 11920
    • 27c Rei MC, Lopez CS, Kraka E, Cremer D, Faza ON. Inorg. Chem. 2016; 55: 8636
  • 28 Shu X.-z, Zhang M, He Y, Frei H, Toste FD. J. Am. Chem. Soc. 2014; 136: 5844
  • 29 He Y, Wu H, Toste FD. Chem. Sci. 2015; 6: 1194
  • 30 Um J, Yun H, Shin S. Org. Lett. 2016; 18: 484
  • 31 Tlahuext-Aca A, Hopkinson MN, Garza-Sanchez RA, Glorius F. Chem. Eur. J. 2016; 22: 5909
  • 32 Alcaide B, Almendros P, Busto E, Luna A. Adv. Synth. Catal. 2016; 358: 1526
  • 33 Xia Z, Khaled O, Mouriès-Mansuy V, Ollivier C, Fensterbank L. J. Org. Chem. 2016; 81: 7182
  • 34 Cai R, Lu M, Aguilera EY, Xi Y, Akhmedov NG, Petersen JL, Chen H, Shi X. Angew. Chem. Int. Ed. 2015; 54: 8772
  • 35 Peng H, Cai R, Xu C, Chen H, Shi X. Chem. Sci. 2016; 7: 6190
  • 36 Tlahuext-Aca A, Hopkinson MN, Sahoo B, Glorius F. Chem. Sci. 2016; 7: 89
  • 37 Kim S, Rojas-Martin J, Toste FD. Chem. Sci. 2016; 7: 85
    • 38a Cornilleau T, Hermange P, Fouquet E. Chem. Commun. 2016; 52: 10040
    • 38b Gauchot V, Lee A.-L. Chem. Commun. 2016; 52: 10163
  • 39 Patil DV, Yun H, Shin S. Adv. Synth. Catal. 2015; 357: 2622
  • 40 During the review process of this account another account on dual gold photoredox catalysis appeared: Hopkinson MH, Tlahuext-Aca A, Glorius F. Acc. Chem. Res. 2016; 2261