Synlett 2017; 28(04): 391-396
DOI: 10.1055/s-0036-1588684
synpacts
© Georg Thieme Verlag Stuttgart · New York

A Novel Chain-Growth CuAAC Polymerization: One-pot Synthesis of Dendritic Hyperbranched Polymers with Well-Defined Structures

Xiaosong Cao
Department of Chemistry and Biochemistry, University of Notre Dame, 305C McCourtney Hall, Notre Dame, IN 46556, USA   Email: hgao@nd.edu
,
Yi Shi
Department of Chemistry and Biochemistry, University of Notre Dame, 305C McCourtney Hall, Notre Dame, IN 46556, USA   Email: hgao@nd.edu
,
Haifeng Gao*
Department of Chemistry and Biochemistry, University of Notre Dame, 305C McCourtney Hall, Notre Dame, IN 46556, USA   Email: hgao@nd.edu
› Author Affiliations
Further Information

Publication History

Received: 31 October 2016

Accepted after revision: 06 December 2016

Publication Date:
21 December 2016 (online)

Abstract

This highlight presents an overview of our recent achievements on developing a chain-growth copper-catalyzed azide–alkyne cycloaddition (CuAAC) polymerization of multifunctional ABm (m ≥ 2) monomers to produce structurally defined hyperbranched polymers in one pot. The chain-growth mechanism is attributed to the dedicate complexation between copper(I) catalyst and triazole groups that confine the copper catalyst in the polymers and selectively favor the polymer–monomer reaction rather than the monomer–monomer reactions. The living nature of this CuAAC polymerization was extensively explored to demonstrate the intriguing features of multibatch addition of various AB2 monomers to produce hyperbranched polymers with high molar mass, low dispersity, core-shell segmented structures, and tunable solubility.

1 Background

2 Development of Living Chain-Growth CuAAC Polymerization

3 Functionalization and Segmented Structure in Hyperbranched Polymers

4 Conclusion

 
  • References

  • 1 Caminade A.-M, Yan D, Smith DK. Chem. Soc. Rev. 2015; 44: 3870
  • 2 Yan D, Gao C, Frey H. Hyperbranched Polymers: Synthesis, Properties, and Applications . Vol. 8. John Wiley and Sons; Hoboken: 2011
  • 3 Zheng Y, Li S, Weng Z, Gao C. Chem. Soc. Rev. 2015; 44: 4091
  • 4 Kurniasih IN, Keilitz J, Haag R. Chem. Soc. Rev. 2015; 44: 4145
  • 5 Scheel AJ, Komber H, Voit BI. Macromol. Rapid Commun. 2004; 25: 1175
  • 6 Konkolewicz D, Gray-Weale A, Perrier S. J. Am. Chem. Soc. 2009; 131: 18075
  • 7 Xue Z, Finke AD, Moore JS. Macromolecules 2010; 43: 9277
  • 8 Emrick T, Chang H.-T, Frechet JM. Macromolecules 1999; 32: 6380
  • 9 Lin Q, Long TE. Macromolecules 2003; 36: 9809
  • 10 Wei Q, Pötzsch R, Liu X, Komber H, Kiriy A, Voit B, Will PA, Lenk S, Reineke S. Adv. Funct. Mater. 2016; 26: 2545
  • 11 Hawker CJ, Frechet JM, Grubbs RB, Dao J. J. Am. Chem. Soc. 1995; 117: 10763
  • 12 Frechet JM, Henmi M, Gitsov I, Aoshima S. Science 1995; 269: 1080
  • 13 Sun H, Kabb CP, Sumerlin BS. Chem. Sci. 2014; 5: 4646
  • 14 Alfurhood JA, Bachler PR, Sumerlin BS. Polym. Chem. 2016; 7: 3361
  • 15 Zou P, Yang LP, Pan CY. J. Polym. Sci., Part A: Polym. Chem. 2008; 46: 7628
  • 16 Liu J, Huang W, Zhou Y, Yan D. Macromolecules 2009; 42: 4394
  • 17 Goodwin A, Baskaran D. Macromolecules 2012; 45: 9657
  • 18 Liu B, Kazlauciunas A, Guthrie JT, Perrier S. Macromolecules 2005; 38: 2131
  • 19 Gao H, Miasnikova A, Matyjaszewski K. Macromolecules 2008; 41: 7843
  • 20 Gao H, Matyjaszewski K. Prog. Polym. Sci. 2009; 34: 317
  • 21 Voit B. J. Polym. Sci., Part A: Polym. Chem. 2005; 43: 2679
  • 22 Hawker C, Lee R, Fréchet J. J. Am. Chem. Soc. 1991; 113: 4583
  • 23 Hölter D, Burgath A, Frey H. Acta Polym. 1997; 48: 30
  • 24 Malmström E, Johansson M, Hult A. Macromolecules 1995; 28: 1698
  • 25 Radke W, Litvinenko G, Mueller AH. Macromolecules 1998; 31: 239
  • 26 Hanselmann R, Hoelter D, Frey H. Macromolecules 1998; 31: 3790
  • 27 Bharathi P, Moore JS. Macromolecules 2000; 33: 3212
  • 28 Hong C.-Y, Pan C.-Y, Huang Y. Polymer 2001; 42: 6733
  • 29 Segawa Y, Higashihara T, Ueda M. Polym. Chem. 2013; 4: 1746
  • 30 Cook AB, Barbey R, Burns JA, Perrier SB. Macromolecules 2016; 49: 1296
  • 31 Suzuki M, Yoshida S, Shiraga K, Saegusa T. Macromolecules 1998; 31: 1716
  • 32 Hong C.-Y, Pan C.-Y. Polymer 2001; 42: 9385
  • 33 Cheng K.-C, Wang LY. Macromolecules 2002; 35: 5657
  • 34 Ohta Y, Fujii S, Yokoyama A, Furuyama T, Uchiyama M, Yokozawa T. Angew. Chem. Int. Ed. 2009; 121: 6056
  • 35 Roy RK, Ramakrishnan S. Macromolecules 2011; 44: 8398
  • 36 Zhou Z, Jia Z, Yan D. Polymer 2012; 53: 3386
  • 37 Min K, Gao H. J. Am. Chem. Soc. 2012; 134: 15680
  • 38 Graff RW, Wang X, Gao H. Macromolecules 2015; 48: 2118
  • 39 Shi Y, Graff RW, Gao H. ACS Symp. Ser. 2015; 1188: 135
  • 40 Frey H. Acta Polym. 1997; 48: 298
  • 41 Lach C, Frey H. Macromolecules 1998; 31: 2381
  • 42 Smet M, Schacht E, Dehaen W. Angew. Chem. Int. Ed. 2002; 41: 4547
  • 43 Huang W, Su L, Bo Z. J. Am. Chem. Soc. 2009; 131: 10348
  • 44 Segawa Y, Higashihara T, Ueda M. J. Am. Chem. Soc. 2010; 132: 11000
  • 45 Rodionov VO, Fokin VV, Finn MG. Angew. Chem. Int. Ed. 2005; 44: 2210
  • 46 Rodionov VO, Presolski SI, Díaz Díaz D, Fokin VV, Finn MG. J. Am. Chem. Soc. 2007; 129: 12705
  • 47 Presolski SI, Hong V, Cho S.-H, Finn MG. J. Am. Chem. Soc. 2010; 132: 14570
  • 48 Qin A, Lam JW, Tang BZ. Chem. Soc. Rev. 2010; 39: 2522
  • 49 Shi Y, Cao X, Gao H. Nanoscale 2016; 8: 4864
  • 50 Shi Y, Graff RW, Cao X, Wang X, Gao H. Angew. Chem. Int. Ed. 2015; 54: 7631
  • 51 Shi Y, Cao X, Luo S, Wang X, Graff RW, Hu D, Guo R, Gao H. Macromolecules 2016; 49: 4416
  • 52 Cao X, Shi Y, Gan W, Naguib H, Wang X, Graff RW, Gao H. Macromolecules 2016; 49: 5342
  • 53 Yokoi M, Konishi S, Hayashi T. Denki Kagaku Oyobi Kogyo Butsuri Kagaku 1984; 52: 218
  • 54 Feng ZV, Li X, Gewirth AA. J. Phys. Chem. B 2003; 107: 9415
  • 55 Cao X, Shi Y, Wang X, Graff RW, Gao H. Macromolecules 2016; 49: 760
  • 56 Zou L, Shi Y, Cao X, Gan W, Wang X, Graff RW, Hu D, Gao H. Polym. Chem. 2016; 7: 5512
  • 57 Shi Y, Cao X, Zou L, Gan W, Gao H. Polym. Chem. 2016; 7: 7500