Synlett 2017; 28(12): 1478-1480
DOI: 10.1055/s-0036-1588782
letter
© Georg Thieme Verlag Stuttgart · New York

N-Triflylphosphorimidoyl Trichloride: A Versatile Reagent for the Synthesis of Strong Chiral Brønsted Acids

Sunggi Lee
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany   Email: list@mpi-muelheim.mpg.de
,
Philip S. J. Kaib
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany   Email: list@mpi-muelheim.mpg.de
,
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany   Email: list@mpi-muelheim.mpg.de
› Author Affiliations
Further Information

Publication History

Received: 24 February 2017

Accepted after revision: 19 March 2017

Publication Date:
11 April 2017 (online)


Abstract

A series of strong Brønsted acids has been synthesized in high yields using N-triflylphosphorimidoyl trichloride as reagent. The syntheses proceed efficiently with electron-rich, electron-deficient, and sterically hindered substrates.

Supporting Information

 
  • References and Notes

  • 3 Nakashima D. Yamamoto H. J. Am. Chem. Soc. 2006; 128: 9626
    • 4a Enders D. Narine AA. Toulgoat F. Bisschops T. Angew. Chem. Int. Ed. 2008; 47: 5661
    • 4b Rueping M. Nachtsheim BJ. Moreth SA. Bolte M. Angew. Chem. Int. Ed. 2008; 47: 593
    • 4c Rueping M. Theissmann T. Kuenkel A. Koenigs RM. Angew. Chem. Int. Ed. 2008; 47: 6798
    • 4d Zeng M. Kang Q. He Q.-L. You S.-L. Adv. Synth. Catal. 2008; 350: 2169
    • 4e Lee S. Kim S. Tetrahedron Lett. 2009; 50: 3345
    • 4f Enders D. Seppelt M. Beck T. Adv. Synth. Catal. 2010; 352: 1413
    • 4g Guan H. Wang H. Huang D. Shi Y. Tetrahedron 2012; 68: 2728
    • 4h Guo B. Schwarzwalder G. Njardarson JT. Angew. Chem. Int. Ed. 2012; 51: 5675
    • 4i Han Z.-Y. Chen D.-F. Wang Y.-Y. Guo R. Wang P.-S. Wang C. Gong L.-Z. J. Am. Chem. Soc. 2012; 134: 6532
    • 4j Borovika A. Nagorny P. Tetrahedron 2013; 69: 5719
    • 4k Cui Y. Villafane LA. Clausen DJ. Floreancig PE. Tetrahedron 2013; 69: 7618
    • 4l Enders D. Rembiak A. Seppelt M. Tetrahedron Lett. 2013; 54: 470
    • 4m Wang P.-S. Li K.-N. Zhou X.-L. Wu X. Han Z.-Y. Guo R. Gong L.-Z. Chem. Eur. J. 2013; 19: 6234
    • 4n Hong X. Küçük HB. Maji MS. Yang Y.-F. Rueping M. Houk KN. J. Am. Chem. Soc. 2014; 136: 13769
    • 4o Kong L. Han X. Jiao P. Chem. Commun. 2014; 50: 14113
    • 4p Li N. Chen D.-F. Wang P.-S. Han Z.-Y. Gong L.-Z. Synthesis 2014; 46: 1355
    • 4q Wu X. Li M.-L. Wang P.-S. J. Org. Chem. 2014; 79: 419
    • 4r Lin J.-S. Yu P. Huang L. Zhang P. Tan B. Liu X.-Y. Angew. Chem. Int. Ed. 2015; 54: 7847
    • 4s Liu J. Zhou L. Wang C. Liang D. Li Z. Zou Y. Wang Q. Goeke A. Chem. Eur. J. 2016; 22: 6258

    • See also:
    • 4t Hatano M. Ishihara H. Goto Y. Ishihara K. Synlett 2016; 27: 564
  • 5 Rueping M. Nachtsheim BJ. Koenigs RM. Ieawsuwan W. Chem. Eur. J. 2010; 16: 13116
    • 6a Kaib PS. J. Schreyer L. Lee S. Properzi R. List B. Angew. Chem. Int. Ed. 2016; 55: 13200
    • 6b Xie Y. Cheng GJ. Lee S. Kaib PS. J. Thiel W. List B. J. Am. Chem. Soc. 2016; 138: 14538
    • 6c Lee S. Kaib PS. J. List B. J. Am. Chem. Soc. 2017; 139: 2156
    • 7a Cheon CH. Yamamoto H. J. Am. Chem. Soc. 2008; 130: 9246
    • 7b Cheon CH. Yamamoto H. Org. Lett. 2010; 12: 2476
    • 7c Yokosaka T. Kanehira T. Nakayama H. Nemoto T. Hamada Y. Tetrahedron 2014; 70: 2151
    • 7d Sai M. Yamamoto H. J. Am. Chem. Soc. 2015; 137: 7091
  • 8 Kaib PS. J. List B. Synlett 2016; 27: 156
  • 9 General Procedure: In a flame-dried vial under Ar, the corresponding (S)- or (R)-BINOL (1.0 equiv) was dissolved in anhyd CH2Cl2 (0.20 M). TfNPCl3 (1.1 equiv) and DIPEA (5.0 equiv) were added and the mixture was stirred for 10 min at ambient temperature. After the full consumption of the starting material (as indicated by TLC), the second nucleophile was added (20 μL for H2O, 2.0 equiv for H2S and TfNH2). After an additional 10 min of stirring, the reaction mixture was dried over Na2SO4, filtered, concentrated, and purified by column chromatography on silica gel to afford the desired product as a salt. Acidification in CH2Cl2 with HCl (3.0 M) followed by drying under reduced pressure afforded the desired product as a free acid.
  • 10 Spectroscopic Data of (S)-6a: 1H NMR (501 MHz, CD2Cl2): δ = 8.14 (s, 1 H), 8.09 (s, 1 H), 8.05 (dd, J = 8.4, 1.1 Hz, 1 H), 8.00 (dd, J = 8.2, 1.1 Hz, 1 H), 7.67–7.72 (m, 2 H), 7.60 (ddt, J = 10.4, 6.0, 1.9 Hz, 3 H), 7.48 (dd, J = 8.4, 7.0 Hz, 2 H), 7.39 (m, 7 H), 7.29 (dd, J = 8.6, 1.1 Hz, 1 H), 7.22 (ddd, J = 8.4, 6.7, 1.3 Hz, 1 H). 13C NMR (126 MHz, CD2Cl2): δ = 143.53 (d, J = 11.7 Hz), 142.73 (d, J = 9.4 Hz), 136.01, 135.98, 133.55, 133.53, 133.36, 133.34, 131.96, 131.93, 131.83, 131.80, 130.00, 129.71, 128.54, 128.53, 128.47, 128.11, 128.09, 127.87, 126.95, 126.94, 126.79, 126.69, 126.62, 126.38, 122.21 (d, J = 2.0 Hz), 122.19 (d, J = 3.0 Hz), 118.71 (qd, J = 322.1, 1.6 Hz). 19F NMR (471 MHz, CD2Cl2): δ = –77.8. 31P NMR (203 MHz, CD2Cl2): δ = –5.8. HRMS (ESI): m/z [M – H+] calcd for C33H20F3NO5PS: 630.0757; found: 630.0759.