Synthesis 2017; 49(21): 4753-4758
DOI: 10.1055/s-0036-1588811
special topic
© Georg Thieme Verlag Stuttgart · New York

NHC-Copper-Catalyzed Tandem Hydrocupration and Allylation of Alkenyl Boronates

Won Jun Jang
Jung Tae Han
Jaesook Yun*
Supported by: National Research Foundation of Korea grant (NRF-2016R1A2B4011719) funded by the Korean government (MEST).
Further Information

Publication History

Received: 03 March 2017

Accepted after revision: 04 April 2017

Publication Date:
03 May 2017 (eFirst)

Published as part of the Special Topic Modern Strategies for Borylation in Synthesis


A tandem hydrocupration/allylation of alkenyl boronates efficiently proceeds with NHC-copper catalysts using hydrosilane and allyl phosphate as reagents. In the presence of IMes–Cu catalyst, the allylation of in situ generated Β-α-copper intermediates smoothly occurs to give homoallylic boronates in high yields, despite competitive side reaction pathways. Mono- and disubstituted alkenyl boronates were effective in the reaction with terminal allyl phosphates, but trisubstituted substrates showed limited reactivity.

Supporting Information

  • References

  • 1 For a review, see: Shintani R. Synthesis 2016; 48: 1087

    • For reviews, see:
    • 2a Alexakis A. Bäckvall JE. Krause N. Pàmies O. Diéguez M. Chem. Rev. 2008; 108: 2796
    • 2b Geurts K. Fletcher SP. van Zijl AW. Minnaard AJ. Feringa BL. Pure Appl. Chem. 2008; 80: 1025

      Some selected examples:
    • 3a Ohmiya H. Yokobori U. Makida Y. Sawamura M. J. Am. Chem. Soc. 2010; 132: 2895
    • 3b Nagao K. Yokobori U. Makida Y. Ohmiya H. Sawamura M. J. Am. Chem. Soc. 2012; 134: 8982
    • 3c Shintani R. Takatsu K. Takeda M. Hayashi T. Angew. Chem. Int. Ed. 2011; 50: 8656
    • 3d Gao F. Carr JL. Hoveyda AH. Angew. Chem. Int. Ed. 2012; 51: 6613
    • 3e Jung B. Hoveyda AH. J. Am. Chem. Soc. 2012; 134: 1490
    • 3f Shi Y. Jung B. Torker S. Hoveyda AH. J. Am. Chem. Soc. 2015; 137: 8948
    • 5a Ito H. Ito S. Sasaki Y. Matsuura K. Sawamura M. J. Am. Chem. Soc. 2007; 129: 14856
    • 5b Guzman-Martinez A. Hoveyda AH. J. Am. Chem. Soc. 2010; 132: 10634
    • 6a Kim J. Park S. Park J. Cho SH. Angew. Chem. Int. Ed. 2016; 55: 1498
    • 6b Shi Y. Hoveyda AH. Angew. Chem. Int. Ed. 2016; 55: 3455
    • 6c Zhang Z.-Q. Zhang B. Lu X. Liu J.-H. Lu X.-Y. Xiao B. Fu Y. Org. Lett. 2016; 18: 952
  • 7 Han JT. Jang WJ. Kim N. Yun J. J. Am. Chem. Soc. 2016; 138: 15146
    • 8a Zhu S. Niljianskul N. Buchwald SL. Nat. Chem. 2016; 8: 144
    • 8b Nguyen TN. T. Thiel NO. Pape F. Teichert JF. Org. Lett. 2016; 18: 2455

      For reviews, see:
    • 9a Díez-Gonzalez S. Nolan SP. Synlett 2007; 2158
    • 9b Lin JC. Y. Huang RT. W. Lee CS. Bhattacharyya A. Hwang WS. Lin IJ. B. Chem. Rev. 2009; 109: 3561
    • 9c Lazreg F. Nahra F. Cazin CS. J. Coord. Chem. Rev. 2015; 293−294: 48
  • 10 During the preparation of this manuscript, diastereo- and enantioselective hydroallylation of 1b with internal allyl phosphates was reported with favored syn-selectivity: Lee J. Torker S. Hoveyda AH. Angew. Chem. Int. Ed. 2017; 56: 821
    • 11a The diastereomeric ratio was determined by 1H NMR analysis and the major diastereomer was determined with the corresponding hydroxy compound after oxidation of 4a and 4b: Tan K.-T. Chng S.-S. Cheng H.-S. Loh T.-P. J. Am. Chem. Soc. 2003; 125: 2958
    • 11b See also ref. 10.
  • 12 Li C. Breit B. Chem. Eur. J. 2016; 22: 14655
  • 13 Jang WJ. Lee WL. Moon JH. Lee JY. Yun J. Org. Lett. 2016; 18: 1390