Synthesis 2017; 49(21): 4769-4774
DOI: 10.1055/s-0036-1588848
special topic
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Double Borylation of Diaryl Sulfoxides with Diboron

Hayate Saito
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan   eMail: yori@kuchem.kyoto-u.ac.jp
,
Keisuke Nogi
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan   eMail: yori@kuchem.kyoto-u.ac.jp
,
Hideki Yorimitsu*
Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan   eMail: yori@kuchem.kyoto-u.ac.jp
› Institutsangaben
This work was supported by JSPS KAKENHI Grant Numbers JP16H01019, JP16H01149, JP16H04109, and JP16H06887 as well as by ACT-C, JST. H.Y. thanks Japan Association for Chemical Innovation, Tokuyama Science Foundation, and The Naito Foundation for financial support.
Weitere Informationen

Publikationsverlauf

Received: 01. April 2017

Accepted after revision: 04. Mai 2017

Publikationsdatum:
29. Mai 2017 (online)


Published as part of the Special Topic Modern Strategies for Borylation in Synthesis

Abstract

Borylation of the C–S bond of diaryl sulfoxides with bis(pinacolato)diboron (B2pin2) is accomplished by means of a phosphine-ligated palladium catalyst and LiN(SiMe3)2 as a base. Both of the aryl rings of the diaryl sulfoxides are converted into borylated products.

Supporting Information

 
  • References

    • 1a Organic Syntheses via Boranes . Vol. 3. Suzuki A. Brown HC. Aldrich Chemical Co; Milwaukee: 2003
    • 1b Miyaura N. In Metal-Catalyzed Cross-Coupling Reactions . 2nd ed.; de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2004
    • 1c Boronic Acids . 2nd ed.; Hall DG. Wiley-VCH; Weinheim: 2011
    • 1d Applied Cross-Coupling Reactions . Nishihara Y. Springer; Heidelberg: 2013
    • 1e Synthesis and Application of Organoboron Compounds . Fernańdez E. Whiting A. Springer; Heidelberg: 2015
    • 2a Ishiyama T. Murata M. Miyaura N. J. Org. Chem. 1995; 60: 7508
    • 2b Ishiyama T. Itoh Y. Kitano T. Miyaura N. Tetrahedron Lett. 1997; 38: 3447
    • 2c Takahashi K. Takagi J. Ishiyama T. Miyaura N. Chem. Lett. 2000; 29: 126

      For reviews, see:
    • 3a Ishiyama T. Miyaura N. J. Synth. Org. Chem. Jpn. 1999; 57: 503
    • 3b Ishiyama T. Miyaura N. J. Organomet. Chem. 2000; 611: 392
    • 3c Ishiyama T. Miyaura N. J. Organomet. Chem. 2003; 680: 3
    • 3d Ishiyama T. Miyaura N. Chem. Rec. 2004; 3: 271
    • 3e Merino P. Tejero T. Angew. Chem. Int. Ed. 2010; 49: 7164
    • 3f Pilarski LT. Szabó KJ. Angew. Chem. Int. Ed. 2011; 50: 8230
    • 3g Murata M. Heterocycles 2012; 85: 1795
    • 3h Chow WK. Yuen OY. Choy PY. So CM. Lau CP. Wong WT. Kwong FY. RSC Adv. 2013; 3: 12518
    • 4a Ishiyama T. Ishida K. Miyaura N. Tetrahedron 2001; 57: 9813
    • 4b Fürstner A. Seidel G. Org. Lett. 2002; 4: 541
    • 4c Billingsley KL. Barder TE. Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 5359
    • 4d Molander GA. Trice SL. J. Dreher SD. J. Am. Chem. Soc. 2010; 132: 17701
    • 4e Kawamorita S. Ohmiya H. Iwai T. Sawamura M. Angew. Chem. Int. Ed. 2011; 50: 8363
    • 4f Chow WK. Yuen OY. So CM. Wong WT. Kwong FY. J. Org. Chem. 2012; 77: 3543
    • 4g Iwai T. Harada T. Tanaka R. Sawamura M. Chem. Lett. 2014; 43: 584
    • 4h Guerrand HD. S. Marciasini LD. Jousseaume M. Vaultier M. Pucheault M. Chem. Eur. J. 2014; 20: 5573
    • 4i Yamamoto Y. Matsubara H. Yorimitsu H. Osuka A. ChemCatChem 2016; 8: 2317
    • 5a Kalläne SI. Teltewskoi M. Braun T. Braun B. Organometallics 2015; 34: 1156
    • 5b Guo W.-H. Min Q.-Q. Gu J.-W. Zhang X. Angew. Chem. Int. Ed. 2015; 54: 9075
    • 5c Liu X.-W. Echavarren J. Zarate C. Martin R. J. Am. Chem. Soc. 2015; 137: 12470
    • 5d Niwa T. Ochiai H. Watanabe Y. Hosoya T. J. Am. Chem. Soc. 2015; 137: 14313
    • 5e Zhou J. Kuntze-Fechner MW. Bertermann R. Paul US. D. Berthel JH. J. Friedrich A. Du Z. Marder TB. Radius U. J. Am. Chem. Soc. 2016; 138: 5250

      For borylation of aryl carbamates and esters, see:
    • 6a Huang K. Yu DG. Zheng SF. Wu ZH. Shi ZJ. Chem. Eur. J. 2011; 17: 786
    • 6b Kinuta H. Hasegawa J. Tobisu M. Chatani N. Chem. Lett. 2015; 44: 366

    • For borylation of aryl ethers, see:
    • 6c Kinuta H. Tobisu M. Chatani N. J. Am. Chem. Soc. 2015; 137: 1593
    • 6d Zarate C. Manzano R. Martin R. J. Am. Chem. Soc. 2015; 137: 6754
    • 6e Tobisu M. Zhao J. Kinuta H. Furukawa T. Igarashi T. Chatani N. Adv. Synth. Catal. 2016; 358: 2417
    • 6f For boron insertion into endocyclic C–O bonds of benzofurans, see: Saito H. Otsuka S. Nogi K. Yorimitsu H. J. Am. Chem. Soc. 2016; 138: 15315

      For borylation of N-aryl amides, see:
    • 7a Tobisu M. Nakamura K. Chatani N. J. Am. Chem. Soc. 2014; 136: 5587
    • 7b Hu J. Zhao Y. Liu J. Zhang Y. Shi Z. Angew. Chem. Int. Ed. 2016; 55: 8718

    • For borylation of ammonium salts, see:
    • 7c Zhang H. Hagihara S. Itami K. Chem. Eur. J. 2015; 21: 16796
    • 7d Hu J. Sun H. Cai W. Pu X. Zhang Y. Shi Z. J. Org. Chem. 2016; 81: 14
    • 8a For borylation of aryl cyanides, see: Tobisu M. Kinuta H. Kita Y. Rémond E. Chatani N. J. Am. Chem. Soc. 2012; 134: 115
    • 8b For decarbonylative borylation of aryl esters, see: Pu X. Hu J. Zhao Y. Shi Z. ACS Catal. 2016; 6: 6692
    • 8c For decarbonylative borylation of aryl thioesters, see: Ochiai H. Uetake Y. Niwa T. Hosoya T. Angew. Chem. Int. Ed. 2017; 56: 2482
    • 9a Organic Sulfur Chemistry: Structure and Mechanism. Oae S. CRC Press; Boca Raton: 1991
    • 9b Organic Sulfur Chemistry: Biochemical Aspects . Oae S. Okuyama T. CRC Press; Boca Raton: 1992
    • 9c Block E. Advances in Sulfur Chemistry . JAI Press; Greenwich: 1994
    • 9d Cremlyn RJ. An Introduction to Organosulfur Chemistry . Wiley; Chichester: 1996

      Reviews:
    • 10a Luh T.-Y. Ni Z.-J. Synthesis 1990; 89
    • 10b Dubbaka SR. Vogel P. Angew. Chem. Int. Ed. 2005; 44: 7674
    • 10c Prokopcová H. Kappe CO. Angew. Chem. Int. Ed. 2008; 47: 3674
    • 10d Wang L. He W. Yu Z. Chem. Soc. Rev. 2013; 42: 599
    • 10e Modha SG. Mehta VP. Van der Eycken E. Chem. Soc. Rev. 2013; 42: 5042
    • 10f Pan F. Shi Z.-J. ACS Catal. 2014; 4: 280
    • 10g Gao K. Otsuka S. Baralle A. Nogi K. Yorimitsu H. Osuka A. J. Synth. Org. Chem. Jpn. 2016; 74: 1119
    • 11a Murray SG. Hartley FR. Chem. Rev. 1981; 81: 365
    • 11b Kondo T. Mitsudo T. Chem. Rev. 2000; 100: 3205
    • 11c Beletskaya IP. Ananikov VP. Eur. J. Org. Chem. 2007; 3431
    • 11d Beletskaya IP. Ananikov VP. Chem. Rev. 2011; 111: 1596
    • 11e Eichman CC. Stambuli JP. Molecules 2011; 16: 590
    • 11f Liu H. Jiang X. Chem. Asian J. 2013; 8: 2546
    • 11g Lee C.-F. Liu Y.-C. Badsara SS. Chem. Asian J. 2014; 9: 706
    • 12a Uetake Y. Niwa T. Hosoya T. Org. Lett. 2016; 18: 2758
    • 12b Bhanuchandra M. Baralle A. Otsuka S. Nogi K. Yorimitsu H. Osuka A. Org. Lett. 2016; 18: 2966
    • 13a Kanemura S. Kondoh A. Yorimitsu H. Oshima K. Synthesis 2008; 2659
    • 13b Ookubo Y. Wakamiya A. Yorimitsu H. Osuka A. Chem. Eur. J. 2012; 18: 12690
    • 13c Murakami K. Yorimitsu H. Osuka A. Angew. Chem. Int. Ed. 2014; 53: 7510
    • 13d Sugahara T. Murakami K. Yorimitsu H. Osuka A. Angew. Chem. Int. Ed. 2014; 53: 9329
    • 13e Otsuka S. Fujino D. Murakami K. Yorimitsu H. Osuka A. Chem. Eur. J. 2014; 20: 13146
    • 13f Baralle A. Otsuka S. Guérin V. Murakami K. Yorimitsu H. Osuka A. Synlett 2015; 26: 327
    • 13g Gao K. Yorimitsu H. Osuka A. Eur. J. Org. Chem. 2015; 2678
    • 13h Vasu D. Yorimitsu H. Osuka A. Angew. Chem. Int. Ed. 2015; 54: 7162
    • 13i Otsuka S. Yorimitsu H. Osuka A. Chem. Eur. J. 2015; 21: 14703
    • 13j Vasu D. Yorimitsu H. Osuka A. Synthesis 2015; 47: 3286
    • 13k Gao K. Yorimitsu H. Osuka A. Angew. Chem. Int. Ed. 2016; 55: 4573
    • 13l Baralle A. Yorimitsu H. Osuka A. Chem. Eur. J. 2016; 22: 10768
    • 14a Valente C. Çalimsiz S. Hoi KH. Mallik D. Sayah M. Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
    • 14b Valente C. Pompeo M. Sayah M. Organ MG. Org. Process Res. Dev. 2014; 18: 180
    • 14c Kantchev EA. B. O’Brien CJ. Organ MG. Aldrichimica Acta 2006; 39: 117
    • 15a Kantchev EA. B. Ying JY. Organometallics 2009; 28: 289
    • 15b Peh G.-R. Kantchev EA. B. Er J.-C. Ying JY. Chem. Eur. J. 2010; 16: 4010
  • 16 Düfert MA. Billingsley KL. Buchwald SL. J. Am. Chem. Soc. 2013; 135: 12877
  • 17 Diborons can act as reducing reagents of aryl sulfoxides to give sulfides, see: Wang G. Zhang H. Zhao J. Li W. Cao J. Zhu C. Li S. Angew. Chem. Int. Ed. 2016; 55: 5985
  • 18 For a study of C–S(=O) bond cleavage of dimethyl sulfoxide with a palladium complex, see: Lee E. Yandulov DV. J. Organomet. Chem. 2011; 696: 4095
  • 19 Olah GA. Marinez ER. Prakash GK. S. Synlett 1999; 1397
  • 20 Hampel T. Ruppenthal S. Sälinger D. Brückner R. Chem. Eur. J. 2012; 18: 3136
  • 21 Sheppard WA. Foster SS. J. Fluorine Chem. 1972; 2: 53
  • 22 Melzig L. Rauhut CB. Naredi-Rainer N. Knochel P. Chem. Eur. J. 2011; 17: 5362
  • 23 Tsoi YT. Zhou Z. Yu WY. Org. Lett. 2011; 13: 5370
  • 24 Bose SK. Deißenberger A. Eichhorn A. Steel PG. Lin Z. Marder TB. Angew. Chem. Int. Ed. 2015; 54: 11843