Synthesis 2017; 49(15): 3460-3470
DOI: 10.1055/s-0036-1588854
paper
© Georg Thieme Verlag Stuttgart · New York

Chemoselectivity in Esterification Reactions – Size Matters after All

Julian Helberg
Department of Chemistry, LMU München, Butenandtstrasse 5–13, 81377 München, Germany   Email: zipse@cup.uni-muenchen.de
,
Marta Marin-Luna
Department of Chemistry, LMU München, Butenandtstrasse 5–13, 81377 München, Germany   Email: zipse@cup.uni-muenchen.de
,
Department of Chemistry, LMU München, Butenandtstrasse 5–13, 81377 München, Germany   Email: zipse@cup.uni-muenchen.de
› Author Affiliations
This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Priority Program ‘Control of London Dispersion Interactions in Molecular Chemistry’ (SPP 1087). Marta Marin-Luna thanks the ‘Xunta de Galicia’ for her contract (ED481B 2016/166-0).
Further Information

Publication History

Received: 05 May 2017

Accepted: 08 May 2017

Publication Date:
13 June 2017 (online)


Dedicated to Herbert Mayr on the occasion of his 70th birthday

Abstract

The reaction of carboxylic acid chlorides with secondary alcohols carrying either flexible alkyl or rigid aryl substituents was studied through a series of competition experiments. Aliphatic acid chlorides react preferentially with the aryl-substituted alcohols, while acid chlorides derived from aromatic carboxylic acids react with very low selectivity. Catalysis by 9-azajulolidine (TCAP) increases the selectivity strongly, while solvent and temperature effects are only moderate. The size of the alcohol substituents seems to impact selectivities only for rigid aryl substituents, and highest selectivities have been found for 1-(1-pyrenyl)ethanol.

Supporting Information

 
  • References

    • 1a Grimme S. Huenerbein R. Ehrlich S. ChemPhysChem 2011; 12: 158
    • 1b Grimme S. Schreiner PR. Angew. Chem. Int. Ed. 2011; 50: 12639
    • 1c Rösel S. Balestrieri C. Schreiner PR. Chem. Sci. 2017; 8: 405
    • 2a Zong G. Barber E. Aljewari H. Zhou J. Hu Z. Du Y. Shi WQ. J. Org. Chem. 2015; 80: 9279
    • 2b Baran PS. Maimone TJ. Richter JM. Nature 2007; 446: 404
    • 2c Koshimizu M. Nagatomo M. Inoue M. Angew. Chem. Int. Ed. 2016; 55: 2493
    • 3a Haines AH. Adv. Carbohydr. Chem. Biochem. 1976; 33: 11
    • 3b Nahmany M. Melman A. Org. Biomol. Chem. 2004; 2: 1563
    • 3c Afagh NA. Yudin AK. Angew. Chem. Int. Ed. 2010; 49: 262
    • 4a Green TW. Wuts PG. M. Protective Groups in Organic Synthesis . Wiley; New York: 1999
    • 4b Araki S. Kambe S. Kameda K. Hirashita T. Synthesis 2003; 5: 751
  • 5 Tandon R. Unzner T. Nigst TA. de Rycke N. Mayer P. Wendt B. David OR. P. Zipse H. Chem. Eur. J. 2013; 19: 6435
  • 6 Ishishara K. Nakayama M. Ohara S. Yamamoto H. Tetrahedron 2002; 58: 8179
    • 7a Inanaga J. Hirata K. Saeki H. Katsuki T. Yamaguchi M. Bull. Chem. Soc. Jpn. 1979; 52: 1989
    • 7b Kawanami Y. Dainobu Y. Inanaga J. Katsuki T. Yamaguchi M. Bull. Chem. Soc. Jpn. 1981; 54: 943
  • 8 Shiina I. Kubota M. Oshiumi H. Hashizume M. J. Org. Chem. 2004; 69: 1822
  • 9 Kagan HB. Fiaud JC. Top. Stereochem. 1988; 18: 249
    • 10a Larsen RD. Corley EG. Davis P. Reider PJ. Grabowski EJ. J. J. Am. Chem. Soc. 1989; 111: 7650
    • 10b Calter MA. Orr RK. Song W. Org. Lett. 2003; 5: 4745
    • 11a Bayliss MA. Homer RB. Shepherd MJ. J. Chem. Soc., Chem. Commun. 1990; 305
    • 11b Ruff F. Farkas Ö. J. Phys. Org. Chem. 2011; 24: 480
  • 12 Lutz V. Glatthaar J. Würtele C. Serafin M. Hausmann H. Schreiner PR. Chem. Eur. J. 2009; 15: 8548
  • 13 Vellalath S. Van KN. Romo D. Tetrahedron Lett. 2015; 56: 3647
    • 14a Patschinski P. Zhang C. Zipse H. J. Org. Chem. 2014; 79: 8348
    • 14b Patschinski P. Zipse H. Org. Lett. 2015; 17: 1010
    • 15a Giese B. Angew. Chem., Int. Ed. Engl. 1977; 16: 125
    • 15b Eyring H. J. Chem. Phys. 1935; 3: 107
  • 16 These results are further confirmed by competition esterifications of 1b, 1c, and 2f, which gave values identical to those of 1a, 1b, and 2f (see SI).
  • 17 A complementary explanation is brought up by the 1H NMR shifts of the methine proton OCHCH3 of the aromatic ethanols 1g, 1h, and 1k. These shift more downfield the larger the aromatic system becomes (ca. 4.85 ppm, 5.65 ppm, and 5.9 ppm under reaction conditions). Since the adjacent molecular environment is identical, this might hint at different electronic environments that could be caused by deshielding from magnetic anisotropy effects or inductive effects. This would imply selectivity driven by the reactivity difference in the employed alcohols.
  • 18 Savile CK. Kazlauskas RJ. J. Am. Chem. Soc. 2005; 127: 12228
  • 19 Kim JM. Pincock JA. Can. J. Chem. 1995; 73: 885
  • 20 Kano T. Sasaki K. Maruoka K. Org. Lett. 2005; 7: 1347
  • 21 Iwata T. Miyake Y. Nishibayashi Y. Uemura S. J. Chem. Soc., Perkin Trans. 1 2002; 13: 1548
  • 22 De Sarkar S. Biswas A. Song CH. Studer A. Synthesis 2011; 1974
  • 23 Simeonov SP. Simeonov AP. Todorov AR. Kurteva VB. Am. J. Analyt. Chem. 2010; 1: 1