Synlett 2017; 28(03): 386-390
DOI: 10.1055/s-0036-1588905
letter
© Georg Thieme Verlag Stuttgart · New York

A Convenient and Efficient One-Pot Synthesis of Arylacetones from (E)-3-Aryl-2-methylacrylic Acids by Curtius Rearrangement

Xin He
Department of Medicinal Chemistry, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning, 110122, P. R. of China   Email: fhmeng@cmu.edu.cn
,
Chong Cao
Department of Medicinal Chemistry, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning, 110122, P. R. of China   Email: fhmeng@cmu.edu.cn
,
Jingwei Liang
Department of Medicinal Chemistry, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning, 110122, P. R. of China   Email: fhmeng@cmu.edu.cn
,
Xinyang Li
Department of Medicinal Chemistry, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning, 110122, P. R. of China   Email: fhmeng@cmu.edu.cn
,
Tingjian Zhang
Department of Medicinal Chemistry, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning, 110122, P. R. of China   Email: fhmeng@cmu.edu.cn
,
Fanhao Meng*
Department of Medicinal Chemistry, School of Pharmacy, China Medical University, No. 77 Puhe Road, Shenyang, Liaoning, 110122, P. R. of China   Email: fhmeng@cmu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 15 August 2016

Accepted after revision: 05 October 2016

Publication Date:
26 October 2016 (online)


Abstract

A convenient and efficient method was developed for the synthesis of arylacetones from (E)-3-aryl-2-methylacrylic acids through a Curtius rearrangement. The Curtius rearrangement of (E)-3-aryl-2-methylacryloyl azides and subsequent hydrolysis proceeded at mild temperatures in a two-phase medium of carbon tetrachloride and water containing a catalytic amount of tetrabutylammonium bromide to give the corresponding derivatives in 82–93% yield.

Supporting Information

 
  • References and Notes

    • 1a Yang JS, Park C.-H, Lee C, Kim H, Oh C, Choi Y, Kang JS, Yun J, Jeong J.-H, Kim M.-H, Han G. Eur. J. Med. Chem. 2014; 85: 399
    • 1b Sasaki S, Cho N, Nara Y, Harada M, Endo S, Suzuki N. J. Med. Chem. 2003; 46: 113
    • 1c Furuya S, Suzuki N, Cho N, Nara Y. WO 2000056739, 2000
  • 2 Wyman DP, Kaufman PR. J. Org. Chem. 1964; 29: 1956
    • 3a Hoorn HJ, Pis J. WO 2003037851, 2003
    • 3b Wheeler WJ, Schmiegel KK, Hunden DC. J. Labelled Compd. Radiopharm. 1989; 27: 171
    • 3c Nichols DE, Barfknecht CF, Rusterholz DB, Benington F, Morin RD. J. Med. Chem. 1973; 16: 480
    • 3d Hambuchen MD, Carroll FI, Rüedi-Bettschen D, Hendrickson HP, Hennings LJ, Blough BE, Brieaddy LE, Pidaparthi RR, Owens SM. J. Med. Chem. 2015; 58: 4665
    • 3e Li JY, Hui HT, Yi Y, Adams JP, Snajdrova R, Li Z. ACS Catal. 2015; 5: 1119
    • 4a Zsolczai D, Németh J, Hell Z. Tetrahedron Lett. 2015; 56: 6389
    • 4b Xu Y, Hu X, Shao J, Yang G, Wu Y, Zhang Z. Green Chem. 2015; 17: 532
    • 4c Li S, Huang K, Zhang X. Chem. Commun. 2014; 50: 8878
    • 4d Kuchař M, Brunová B, Rejholc V, Jelínková M, Holubek J, Němeček O. Collect. Czech. Chem. Commun. 1984; 49: 122
    • 4e Catalano JG, Gaitonde V, Beesu M, Leivers AL, Shotwell B. Tetrahedron Lett. 2015; 56: 6077
    • 4f Zimbron JM, Seeger-Weibel M, Hirt H, Gallou F. Synthesis 2008; 1221
    • 5a Reddy PS, Yadagiri P, Lumin S, Shin D.-S, Falck JR. Synth. Commun. 1988; 18: 545
    • 5b Lee JG, Kwak KH. Tetrahedron Lett. 1992; 33: 3165
    • 5c Lago JM, Arrieta A, Palomo C. Synth. Commun. 1983; 13: 289
    • 5d Gumaste VK, Bhawal BM, Deshmukh AR. A. S. Tetrahedron Lett. 2002; 43: 1345
    • 5e Akhlaghinia B, Rouhi-Saadabad H. Can. J. Chem. 2013; 91: 181
    • 5f Rewcastle GW, Denny WA. Synthesis 1985; 220
    • 5g Luedtke AE, Timberlake JW. J. Org. Chem. 1985; 50: 268
    • 5h Rawal VH, Zhong HM. Tetrahedron Lett. 1994; 35: 4947
  • 6 Ivanova EM, Borovika DA, Vozny IV, Trapencieris P, Žalubovskis R. Chem. Heterocycl. Compd. (Engl. Transl.) 2012; 48: 1114
  • 7 Li Y, Yang F, Xu X, Pan S, Wang L, Xia C. Chin. J. Chem. 2009; 27: 433
  • 8 Luckhurst CA, Millichip I, Parker B, Reuberson J, Furber M. Tetrahedron Lett. 2007; 48: 8878
  • 9 Yamatsugu K, Kamijo S, Suto Y, Kanai M, Shibasaki M. Tetrahedron Lett. 2007; 48: 1403
  • 10 Gómez-Sánchez E, Marco-Contelles J. Tetrahedron 2005; 61: 1207
    • 11a Verma RK, Singla R, Punniyakoti VT. Med. Chem. Res. 2004; 13: 660
    • 11b Yan Q, Kong D, Li M, Hou G, Zi G. J. Am. Chem. Soc. 2015; 137: 10177
    • 11c Muhammad N, Tahir MN, Ali S Zia-ur-Rehman, Acta Crystallogr., Sect. E 2008; 64: o1717
    • 11d Kandukuri SR, Schiffner JA, Oestreich M. Angew. Chem. Int. Ed. 2012; 51: 1265
    • 11e Miyanaga W, Shima Y, Noguchi M, Oonuki A, Kawato Y, Iwata H, Harada E, Takashita R, Ueno H, Nakagawa T. US 20110082109, 2011
    • 11f Cueva JP, Gallardo-Godoy A, Juncosa JI. Jr, Vidi PA, Lill MA, Watts VJ, Nichols DE. J. Med. Chem. 2011; 54: 5508
  • 12 The various (E)-3-aryl-2-methylacrylic acids were obtained from commercial sources.
  • 13 1-Arylacetones 2ai; General Procedure A well-stirred mixture of the appropriate (E)-3-aryl-2-methyl­acrylic acid 1 (30 mmol) and SOCl2, (30.3 mmol) in CCl4 (50 mL) was heated at 35 °C for 30 min. 20% aq NaN3 (30.3 mmol) and TBAB (0.97 g, 10 mol%) were added at r.t., and the mixture was stirred for another 30 min, then heated to the reflux temperature. When the reaction was complete (1.5–2 h; Table 2), the aqueous layer was separated and extracted with CCl4 (3 × 20 mL). The organic layers were combined, dried (Na2SO4), and concentrated under reduced pressure. The residue was purified by flash chromatography (silica gel, EtOAc–PE). All products were identified by 1H and 13C NMR and MS spectral analysis.
  • 14 Meng F, He X, Cao C, Liang J, Zhang T. CN 201610328295.4, 2016
  • 15 1-Phenylacetone (2a) Colorless oil; yield: 3.75 g (93%). 1H NMR (600 MHz, DMSO-d 6): δ = 7.29–7.34 (m, 2 H), 7.22–7.26 (m, 1 H), 7.18–7.21 (m, 2 H), 3.75 (s, 2 H), 2.12 (s, 3 H). 13C NMR (151 MHz, DMSO-d 6): δ = 206.2, 135.3, 130.0, 128.7, 126.9, 50.0, 29.7. GC-MS (EI): m/z = 134.2 [M+]. 1-(3,4,5-Trimethoxyphenyl)acetone(2b) Faintly yellow solid; yield: 5.78 g (86%), mp 88–91 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 6.49 (s, 2 H), 3.74 (s, 6 H), 3.66 (s, 2 H), 3.63 (s, 3 H), 2.11 (s, 3 H). 13C NMR (151 MHz, DMSO-d 6): δ = 206.4, 153.1, 136.6, 130.9, 107.2, 60.3, 56.1, 50.3, 29.7. GC-MS (EI): m/z = 224.2 [M+]. 1-(3,4-Dimethoxyphenyl)acetone (2c) Yellow oil; yield: 4.78 g (82%). 1H NMR (600 MHz, DMSO-d 6): δ = 6.87 (d, J = 8.1 Hz, 1 H), 6.78 (d, J = 1.9 Hz, 1 H), 6.70 (dd, J = 8.1, 2.1 Hz, 1 H), 3.72 (s, 6 H), 3.64 (s, 2 H), 2.09 (s, 3 H). 13C NMR (151 MHz, DMSO-d 6): δ = 206.7, 149.0, 148.0, 127.7, 121.9, 113.7, 112.2, 55.8, 55.8, 49.7, 29.5. GC-MS (EI): m/z = 194.2 [M+]. 1-(4-Methoxyphenyl)acetone (2d) Yellow oil; yield: 4.29 g (87%). 1H NMR (600 MHz, DMSO-d 6): δ = 7.08–7.11 (m, 2 H), 6.84–6.89 (m, 2 H), 3.72 (s, 3 H), 3.66 (s, 2 H), 2.08 (s, 3 H). 13C NMR (151 MHz, DMSO-d 6): δ = 206.7, 158.4, 130.9, 127.2, 114.1, 55.3, 49.2, 29.6. GC-MS (EI): m/z = 164.2 [M+]. 1-(2-Methoxyphenyl)acetone (2e) Yellow oil; yield: 4.39 g (89%). 1H NMR (600 MHz, DMSO-d 6): δ = 7.19–7.26 (m, 1 H), 7.12 (d, J = 7.3 Hz, 1 H), 6.96 (d, J = 8.3 Hz, 1 H), 6.88 (t, J = 7.3 Hz, 1 H), 3.73 (s, 3 H), 3.64 (s, 2 H), 2.07 (s, 3 H). 13C NMR (151 MHz, DMSO-d 6): δ = 206.2, 157.5, 131.5, 128.6, 124.2, 120.6, 111.0, 55.7, 45.0, 29.7. GC-MS (EI): m/z = 164.2 [M+]. 1-(3-Nitrophenyl)acetone (2f) Yellow solid; yield: 4.57 g (85%); mp 64–66 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 8.04–8.11 (m, 2 H), 7.54–7.65 (m, 2 H), 4.00 (s, 2 H), 2.19 (s, 3 H). 13C NMR (151 MHz, DMSO-d 6): δ = 205.5, 148.0, 137.6, 137.1, 129.8, 124.8, 121.8, 48.7, 30.1. GC-MS (EI): m/z = 179.2 [M+]. 1-(4-Nitrophenyl)acetone (2g) Faintly yellow solid; yield: 4.73 g (88%); mp 203–206 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 8.12–8.21 (m, 2 H), 7.37–7.51 (m, 2 H), 3.99 (s, 2 H), 2.19 (s, 3 H). 13C NMR (151 MHz, DMSO-d 6): δ = 205.2, 146.7, 143.5, 131.5, 123.5, 49.2, 30.2. GC-MS (EI): m/z = 179.2 [M+]. 1-(3-Chlorophenyl)acetone (2h) Yellow oil; yield: 4.30 g (85%). 1H NMR (600 MHz, DMSO-d 6): δ = 7.32 (t, J = 7.7 Hz, 1 H), 7.29 (d, J = 8.3 Hz, 1 H), 7.26 (s, 1 H), 7.13 (d, J = 7.3 Hz, 1 H), 3.80 (s, 2 H), 2.14 (s, 3 H). 13C NMR (151 MHz, DMSO-d 6): δ = 205.7, 137.8, 133.2, 130.3, 129.9, 128.8, 126.8, 49.1, 30.0. GC-MS (EI): m/z = 168.6 [M+]. 1-(4-Chlorophenyl)acetone (2i) Yellow oil; yield: 4.20 g (83%). 1H NMR (600 MHz, DMSO-d 6): δ = 7.32–7.39 (m, 2 H), 7.14–7.24 (m, 2 H), 3.78 (s, 2 H), 2.13 (s, 3 H). 13C NMR (151 MHz, DMSO-d 6): δ = 205.9, 134.3, 131.9, 131.7, 128.5, 49.0, 29.9. GC-MS (EI): m/z = 168.6 [M+].