Synlett 2017; 28(07): 751-761
DOI: 10.1055/s-0036-1588945
synpacts
© Georg Thieme Verlag Stuttgart · New York

O-Glycosylation Enabled by Remote Activation

Mark L. Spell
,
Kristina Deveaux
,
Caitlin G. Bresnahan
,
Justin R. Ragains*
Further Information

Publication History

Received: 09 December 2016

Accepted after revision: 11 January 2017

Publication Date:
16 February 2017 (online)

Abstract

O-Glycosylation is a critically important and recurring step in the synthesis of oligosaccharides and other natural and non-natural products. While many approaches to O-glycosylation have been reported, those strategies involving remote activation are distinguished by the mildness and orthogonality that they often engender. As a result, O-glycosylation using remote activation strategies has been utilized successfully in the synthesis of complex molecules that include oligosaccharides and macrolides. Herein, we discuss a number of contributions that have been made to this area since the 1970s. This includes our own recent contribution involving the visible-light activation of 4-p-methoxyphenyl-3-butenylthioglycosides toward O-glycosylation in the presence of Umemoto’s reagent.

1 Introduction

2 Fraser-Reid’s Development of n-Pentenylglycosides as Glycosyl Donors

3 Hanessian’s Remote Activation of 2-Pyridylthioglycosides

4 Gold-Catalyzed O-Glycosylation (Hotha and Yu)

5 Wan’s ‘Interrupted Pummerer’ Approach to O-Glycosylation

6 O-Glycosylation with 4-p-Methoxyphenyl-3-butenylthioglycosides

7 Conclusions

 
  • References

  • 1 Current address: Nalco Champion, Sugar Land, TX 77479, USA.
  • 2 Essentials of Glycobiology . 2nd ed.; Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Cold Spring Harbor Laboratory Press; Cold Spring Harbor NY: 2009
  • 3 Schmidt RR, Jung K.-H In Carbohydrates in Chemistry and Biology . Ernst B, Hart GW, Sinaÿ P. Wiley-VCH; Weinheim: 2000: 5-59
  • 4 Yu B, Sun J. Chem. Commun. 2010; 46: 4668
  • 5 Codée JD. C, Litjens RE. J. N, van den Bos LJ, Overkleeft HS, van der Marel GA. Chem. Soc. Rev. 2005; 34: 769
  • 6 Oscarson S In Carbohydrates in Chemistry and Biology . Ernst B, Hart GW, Sinaÿ P. Wiley-VCH; Weinheim: 2000: 93-116
  • 7 Goswami M, Ellern A, Pohl NL. B. Angew. Chem. Int. Ed. 2013; 52: 8441
  • 8 Shiao TC, Roy R. Top. Curr. Chem. 2011; 301: 69
  • 9 Xiao X, Zhao Y, Shu P, Zhao X, Liu Y, Sun J, Zhang Q, Zeng J, Wan Q. J. Am. Chem. Soc. 2016; 138: 13402
  • 10 Shu P, Xiao X, Zhao Y, Xu Y, Yao W, Tao J, Wang H, Yao G, Lu Z, Zeng J, Wan Q. Angew. Chem. Int. Ed. 2015; 54: 14432
  • 11 Mootoo DR, Konradsson P, Fraser-Reid B. J. Am. Chem. Soc. 1989; 111: 8540
  • 12 Mootoo DR, Konradsson P, Udodong U, Fraser-Reid B. J. Am. Chem. Soc. 1988; 110: 5583
  • 13 Mootoo DR, Date V, Fraser-Reid B. J. Am. Chem. Soc. 1988; 110: 2662
  • 14 Mandai T, Okumoto H, Oshitari T, Nakanishi K, Mikuni K, Hara K, Hara K, Iwatani W, Amano T, Nakamura K, Tsuchiya Y. Heterocycles 2001; 54: 561
  • 15 Pederson CM, Nordstrøm LU, Bols M. J. Am. Chem. Soc. 2007; 129: 9222
  • 16 Baek JY, Choi TJ, Jeon HB, Kim KS. Angew. Chem. Int. Ed. 2006; 45: 7436
  • 17 Hanessian S, Bacquet C, Lehong N. Carbohydr. Res. 1980; 80: C17
  • 18 Mukaiyama T, Nakatsuka T, Shoda S. Chem. Lett. 1979; 487
  • 19 Woodward RB, Logusch E, Nambiar KP, Sakan K, Ward DE, Au-Yeung B.-W, Balaram P, Browne LJ, Card PJ, Chen CH, Chênevert RB, Fliri A, Frobel K, Gais H.-J, Garratt DG, Hayakawa K, Heggie W, Hesson DP, Hoppe D, Hoppe I, Hyatt JA, Ikeda D, Jacobi PA, Kim KS, Kobuke Y, Kojima K, Krowicki K, Lee VJ, Leutert T, Malchenko S, Martens J, Matthews RS, Ong BS, Press JB, Rajan Babu TV, Rousseau G, Sauter HM, Suzuki M, Tatsuta K, Tolbert LM, Truesdale EA, Uchida I, Ueda Y, Uyehara T, Vasella AT, Vladuchick WC, Wade PA, Williams RM, Wong HN.-C. J. Am. Chem. Soc. 1981; 103: 3215
  • 20 Demchenko AV, Malysheva NN, De Meo C. Org. Lett. 2003; 5: 455
  • 21 Hasty SJ, Kleine MA, Demchenko AV. Angew. Chem. Int. Ed. 2011; 50: 4197
  • 22 Hotha S, Kashyap S. J. Am. Chem. Soc. 2006; 128: 9620
  • 23 Gorin DJ, Sherry BD, Toste FD. Chem. Rev. 2008; 108: 3351
  • 24 Li Y, Yang Y, Yu B. Tetrahedron Lett. 2008; 49: 3604
  • 25 Mishra B, Neralkar M, Hotha S. Angew. Chem. Int. Ed. 2016; 55: 7786
  • 26 Tang Y, Li J, Zhu Y, Li Y, Yu B. J. Am. Chem. Soc. 2013; 135: 18396
  • 27 Zhu Y, Yu B. Angew. Chem Int. Ed. 2011; 50: 8329
  • 28 Koppolu SR, Niddana R, Balamurugan R. Org. Biomol. Chem. 2015; 13: 5094
  • 29 Adhikari S, Baryal KN, Zhu D, Li X, Zhu J. ACS Catal. 2013; 3: 57
  • 30 Imagawa H, Kinoshita A, Fukuyama T, Yamamoto H. Tetrahedron Lett. 2006; 47: 4729
  • 31 Chen X, Shen D, Wang Q, Yang Y, Yu B. Chem. Commun. 2015; 51: 13957
  • 32 Bur SK, Padwa A. Chem. Rev. 2004; 104: 2401
  • 33 Kim KS, Kim JH, Lee YJ, Lee YJ, Park J. J. Am. Chem. Soc. 2001; 123: 8477
  • 34 Spell ML, Deveaux K, Bresnahan CG, Bernard BL, Sheffield W, Kumar R, Ragains JR. Angew. Chem. Int. Ed. 2016; 55: 6515
  • 35 Rosokha SV, Kochi JK. Acc. Chem. Res. 2008; 41: 641
  • 36 Arceo E, Jurberg ID, Álvarez-Fernández A, Melchiorre P. Nat. Chem. 2013; 5: 750
  • 37 Lima CG. S, Lima TM, Duarte M, Jurberg ID, Paixao MW. ACS Catal. 2016; 6: 1389