Synlett 2017; 28(11): 1353-1357
DOI: 10.1055/s-0036-1588976
letter
© Georg Thieme Verlag Stuttgart · New York

Primary-Secondary Diamine Catalyzed Enantioselective Synthesis of Substituted Cyclohex-2-enones by Cascade Michael–Aldol–­Dehydration of Ketones with Chalcones

Sandip J. Wagh*
a   Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India   Email: sandipwagh10@gmail.com
,
Ganesh R. Dhage
b   Department of Chemistry, Ahmednagar College, Ahmednagar, Station Road, Ahmednagar, Maharashtra, 414001, India
› Author Affiliations
Further Information

Publication History

Received: 06 February 2017

Accepted after revision: 27 February 2017

Publication Date:
20 March 2017 (online)


Abstract

A simple primary-secondary diamine organocatalyst catalyzes the cascade Michael–aldol–dehydration of chalcones and unmodified ketones to produce substituted cyclohex-2-enones under mild conditions with good yields and high enantio- and/or diastereoselectivities. The success of the catalyst system is possibly due to simultaneous activation of the electrophilic chalcone by iminium formation and the nu­cleophilic ketone by enamine formation with an overall intramolecular iminium–di-enamine mechanism.

Supporting Information

 
  • References and Notes


    • For selected reviews, see:
    • 1a Dalko PI. Enantioselective Organocatalysis . Wiley-VCH; Weinheim: 2007
    • 1b Berkessel A, Grçger H. Asymmetric Organocatalysis . Wiley-VCH; Weinheim: 2004

    • Special issue on organocatalysis:
    • 1c Chem. Rev. 2007; 107: 5413-5413

    • Special issue on organocatalysis:
    • 1d Acc. Chem. Res. 2004; 37: 487-487
    • 1e Melchiorre P, Marigo M, Carlone A, Bartoli G. Angew. Chem. Int. Ed. 2008; 47: 6138-6138
    • 1f Dondoni A, Massi A. Angew. Chem. Int. Ed. 2008; 47: 4638-4638

      Selected reviews:
    • 2a Marigo M, Jørgensen KA. Chem. Commun. 2006; 2001-2001
    • 2b Guillena G, Ramón DJ. Tetrahedron: Asymmetry 2006; 17: 1465-1465
    • 2c Bertelsen S, Nielsen M, Jørgensen KA. Angew. Chem. Int. Ed. 2007; 46: 7356-7356

      Selected reviews:
    • 3a Lelais G, MacMillan DW. C. Aldrichimica Acta 2006; 39: 79-79
    • 3b Almasi D, Alonso DA, Najera C. Tetrahedron: Asymmetry 2007; 18: 299-299
    • 3c Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471-5471
    • 3d Tsogoeva SB. Eur. J. Org. Chem. 2007; 1701-1701
    • 3e Jørgensen KA, Bertelsen S. Chem. Soc. Rev. 2009; 38: 2178-2178
    • 3f Melchiorre P. Angew. Chem. Int. Ed. 2012; 51: 9748-9748
    • 3g Erkkila A, Majander I, Phiko PM. Chem. Rev. 2007; 107: 5416-5416

      Selected reviews:
    • 4a Tietze LF. Chem. Rev. 1996; 96: 115-115
    • 4b Li G, Wei H.-X, Kim S.-H, Carducci MD. Angew. Chem. Int. Ed. 2001; 40: 4277-4277
    • 4c Enders D, Hüttl MR. M, Grondal C, Rabbe G. Nature (London, U.K.) 2006; 441: 861-861

      Selected reviews:
    • 5a Enders D, Grondal C, Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570-1570
    • 5b Westermann B, Ayaz M, van Berkel SS. Angew. Chem. Int. Ed. 2010; 49: 846-846
    • 5c Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167-167
    • 5d Yu X, Wang W. Org. Biomol. Chem. 2008; 6: 2037-2037
    • 5e Vera S, Melchiore P. An. Quím. 2010; 106: 277-277
    • 5f Pellissier H. Adv. Synth. Catal. 2012; 354: 237-237
    • 5g Marson CM. Chem. Soc. Rev. 2012; 41: 7712-7712
    • 5h Pellissier H. Chem. Rev. 2013; 113: 442-442

      Selected reviews:
    • 6a Ho T.-L. Enantioselective Synthesis: Natural Products Synthesis from Chiral Terpenes. Wiley; New York: 1992
    • 6b Klunder AJ. H, Zhu J, Zwanenburg B. Chem. Rev. 1999; 99: 1163-1163

    • For recent selected examples, see:
    • 6c Mohr PJ, Halcomb RL. J. Am. Chem. Soc. 2003; 125: 1712-1712
    • 6d Miyashita M, Saino M. Science 2004; 305: 495-495
    • 6e Baran PS, Ritcher JM, Lin DW. Angew. Chem. Int. Ed. 2005; 44: 609-609
    • 6f Goeke A, Mertl D, Brunner G. Angew. Chem. Int. Ed. 2005; 44: 99-99
    • 6g Lakshmi R, Bateman TD, McIntosh MC. J. Org. Chem. 2005; 70: 5313-5313
  • 7 Yang X, Wang J, Li P. Org. Biomol. Chem. 2014; 12: 2499-2499
    • 8a Agami C, Sevestre H. J. Chem. Soc., Chem. Commun. 1984; 1385-1385
    • 8b Agami C, Platzer N, Sevestre H. Bull. Soc. Chim. Fr. 1987; 2: 358-358
    • 8c Zhong G, Hoffmann T, Lerner RA, Danishefsky S, Barbas CF. III. J. Am. Chem. Soc. 1997; 119: 8131-8131
    • 8d List B, Lerner RA, Barbas CF. III. Org. Lett. 1999; 1: 59-59
    • 8e Zhou J, Wakchaure V, Kraft P, List B. Angew. Chem. Int. Ed. 2008; 47: 7656-7656
    • 8f Chen L, Luo S, Li J, Li X, Cheng JP. Org. Biomol. Chem. 2010; 8: 2627-2627
    • 8g Zhang F.-Y, Corey EJ. Org. Lett. 2000; 2: 1097-1097
    • 9a Halland N, Aburel PS, Jørgensen KA. Angew. Chem. Int. Ed. 2004; 43: 1272-1272
    • 9b Akiyama T, Katoh T, Mori K. Angew. Chem. Int. Ed. 2009; 48: 4226-4226
    • 9c Wang LL, Peng L, Bai JF, Huang QC, Xu XY, Wang LX. Chem. Commun. 2010; 46: 8064-8064
    • 9d Yang YQ, Chai Z, Wang HF, Chen XK, Cui HF, Zheng CW, Xiao H, Li Zhao PG. Chem. Eur. J. 2009; 15: 13295-13295
    • 9e Cui HF, Yang YQ, Chai Z, Li P, Zheng CW, Zhu SZ, Zhao G. J. Org. Chem. 2010; 75: 117-117
    • 9f Li PF, Wang YC, Liang XM, Ye JX. Chem. Commun. 2008; 3302-3302
    • 9g Li PF, Wen SG, Yu F, Liu QX, Li WJ, Wang YC, Liang XM, Ye JX. Org. Lett. 2009; 11: 753-753
    • 9h Wen SG, Li PF, Wu HB, Yu F, Liang XM, Ye JX. Chem. Commun. 2010; 46: 4806-4806
    • 9i Yang JJ, Li WJ, Jin ZC, Liang XM, Ye JX. Org. Lett. 2010; 12: 5218-5218

      For selected examples, see:
    • 10a Carlone A, Marigo M, North C, Landa A, Jørgensen KA. Chem. Commun. 2006; 4928-4928
    • 10b Marigo M, Bertelsen S, Landa A, Jørgensen KA. J. Am. Chem. Soc. 2006; 128: 5475-5475
    • 10c Bolze P, Dickmeiss G, Jørgensen KA. Org. Lett. 2008; 10: 3753-3753
    • 10d Albrecht Ł, Richter B, Vila C, Krawczyk H, Jørgensen KA. Chem. Eur. J. 2009; 15: 3093-3093
    • 10e Hayashi Y, Toyoshima M, Gotoh H, Ishikawa H. Org. Lett. 2009; 11: 45-45

      For selected examples, see:
    • 11a Chen YC. Synlett 2008; 1919-1919
    • 11b Wang J, Li H, Zu LS, Wang W. Adv. Synth. Catal. 2006; 348: 425-425
    • 11c Wang J, Wang X, Ge Z, Cheng T, Li R. Chem. Commun. 2010; 46: 1751-1751
    • 11d Qian Y, Xiao S, Liu L, Wang Y. Tetrahedron: Asymmetry 2008; 19: 1515-1515
    • 11e Xu DZ, Shi S, Liu YJ, Wang YM. Tetrahedron 2009; 65: 9344-9344
    • 11f Liu YF, Wu Y, Lu AD, Wang YM, Wu GP, Zhou ZH, Tang CC. Tetrahedron: Asymmetry 2011; 22: 476-476
    • 11g Ma S, Wu L, Liu M, Wang Y. Org. Biomol. Chem. 2012; 10: 3721-3721
    • 11h Xie HY, Ban SR, Liu JN, Li QS. Tetrahedron Lett. 2012; 53: 3865-3865
    • 11i Liu L, Zhu Y, Huang K, Chang W, Li J. Eur. J. Org. Chem. 2013; 2634-2634
    • 11j Kumar TP, Sattar MA, Sarma VU. M. Tetrahedron: Asymmetry 2013; 24: 1615-1615
  • 12 Wagh SJ, Chowdhury R, Ghosh SK. Curr. Organocatal. 2014; 1: 71-71

    • For selected reviews on primary amine catalysis, see:
    • 13a Peng F, Shao Z. J. Mol. Catal. A: Chem. 2008; 285: 1-1
    • 13b Wu L.-W, Lu Y. Org. Biomol. Chem. 2008; 6: 2047-2047
    • 13c Xu L.-W, Luo J, Lu Y. Chem. Commun. 2009; 1807-1807

    • For a review on asymmetric primary amine catalysts based on Cinchona alkaloids, see:
    • 13d Chen Y.-C. Synlett 2008; 1919-1919
  • 14 Bartoli G, Melchiorre P. Synlett 2008; 1759-1759

    • For selected examples, see:
    • 15a Inokoishi Y, Sasakura N, Nakano K, Ichikawa Y, Kotsuki H. Org. Lett. 2010; 12: 1616-1616
    • 15b Ge Z, Cheng T, Li R. Chem. Commun. 2010; 2124-2124
    • 15c Liu Y, Wang J, Sun Q, Li R. Tetrahedron Lett. 2011; 52: 3584-3584
    • 15d Liu Y, Gao P, Wang J, Sun Q, Ge Z, Li R. Synlett 2012; 23: 1031-1031
    • 16a Wang W, Wang J, Zhou S, Sun Q, Ge Z, Wang X, Li R. Chem. Commun. 2013; 1333-1333
    • 16b Liu Y, Liu X, Wang M, He P, Lin L, Feng X. J. Org. Chem. 2012; 77: 4136-4136
    • 17a Diakos C.-I, Zhang M, Beale P.-J, Fenton R.-R, Hambley T.-W. Eur. J. Med. Chem. 2009; 44: 2807-2807
    • 17b Shen H.-M, Ji H.-B. Tetrahedron Lett. 2012; 53: 3541-3541
  • 18 A mixture of chalcone 4a (0.2 mmol), acetone (3 mmol), organocatalyst 3 (0.06 mmol), 3,5-dinitrobenzoic acid (0.08 mmol) in t-BuOH (500 μL) was stirred at r.t. for 96 h. After column chromatography (eluent: 95:5, hexane–EtOAc) a white solid was obtained (40 mg, 80%). The enantiomeric excess (ee) was determined by HPLC using a Chiralcel OJ-H column (hexane–i-PrOH = 90:10); flow rate 1.0 mL/min; t R (major) = 18.3 min, t R (minor) = 21.3 min (ee 89%); [α]D 26 +34.8 (c 0.5, CH2Cl2); mp 92–93 °C. IR (KBr): 1663 (CO), 1605, 1497, 1444, 1372, 1265, 761 cm–1. 1H NMR (400 MHz, CDCl3): δ = 2.69–2.82 (m, 2 H, CH2), 2.95 (ddd, = 2.4, 11.2, 17.8 Hz, 1 H, CHA HBCO), 3.07 (dd, J = 4.4, 17.8 Hz, CHA HB CO, 1 H), 3.43–3.51 (m, 1 H, PhCH), 6.52 (d, J = 1.8 Hz, 1 H, C=CH), 7.29–7.46 (m, 8 H, Ar), 7.53–7.58 (m, 2 H, Ar). 13C NMR (50 MHz, CDCl3): δ = 36.2, 40.9, 43.9, 125.0, 126.1 (2 C), 126.7 (2 C), 127.0, 128.8 (3 C), 130.1, 138.3, 143.1, 158.7 (2 C), 199.2 (CO).
  • 19 The structures of 6c (CCDC 1041621) and 9b (CCDC 1041622) were confirmed by single-crystal X-ray data. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.