Synthesis 2017; 49(18): 4254-4260
DOI: 10.1055/s-0036-1588998
special topic
© Georg Thieme Verlag Stuttgart · New York

Green Organocatalytic Synthesis of Dihydrobenzofurans by Oxidation–Cyclization of Allylphenols

Ierasia Triandafillidi
Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece   eMail: ckokotos@chem.uoa.gr
,
Ioanna K. Sideri
Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece   eMail: ckokotos@chem.uoa.gr
,
Dimitrios Ioannis Tzaras
Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece   eMail: ckokotos@chem.uoa.gr
,
Nikoleta Spiliopoulou
Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece   eMail: ckokotos@chem.uoa.gr
,
Christoforos G. Kokotos*
Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece   eMail: ckokotos@chem.uoa.gr
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 11. März 2017

Accepted after revision: 22. März 2017

Publikationsdatum:
20. April 2017 (online)


Published as part of the Special Topic Modern Cyclization Strategies in Synthesis

Abstract

A green and cheap protocol for the synthesis of dihydrobenzofurans via an organocatalytic oxidation of o-allylphenols is presented. The use of 2,2,2-trifluoroacetophenone and H2O2 as the oxidation system, leads to a highly useful synthetic method, where a variety of substituted o-allylphenols were cyclized in high yields.

Supporting Information

 
  • References

    • 1a Nascimento IR. Lopes LM. X. Phytochemistry 1999; 52: 345
    • 1b Benevides PJ. C. Sartorelli P. Kato MJ. Phytochemistry 1999; 52: 339
    • 1c Ishii H. Ishikawa T. Tetrahedron Lett. 1982; 23: 4245
    • 1d Bohlmann F. Scheidges C. Zdero C. King RM. Robinson H. Phytochemistry 1984; 23: 1109
    • 1e Lau CK. Belanger PC. Dufresne C. Scheigetz J. Therien M. Fitzsimmons B. Young RN. Ford Hutchinson AW. Riendeau D. Denis D. Guay J. Charleson C. Piechuta H. McFarlance CS. Leechiu SH. Eline D. Alvaro RF. Miwa C. Walsh JL. J. Med. Chem. 1992; 35: 1299
    • 1f Hellberg MR. Namil A. Delgado P. David KC. Kessler TL. Graff G. Haggard KS. Nixon JC. J. Med. Chem. 1999; 42: 267
    • 2a Pfefferle W. Anke H. Bross M. Steffan B. Vianden R. Steglich W. J. Antibiot. 1990; 43: 648
    • 2b Ayer WA. Nozawa K. Can. J. Micro. Biol. 1990; 36: 83
    • 2c Miyake M. Fujimoto Y. Chem. Lett. 1993; 1683
    • 3a Bonner WA. Burke NI. Fleck WE. Hill RK. Joyle JA. Sjoberg B. Zalkow JH. Tetrahedron 1964; 20: 1419
    • 3b Ramadas S. David Krupadanam GL. Tetrahedron: Asymmetry 2000; 11: 3375
  • 4 Shinozaki K. Sato H. Iwakuma T. Sato R. Kurimoto T. Yoshida K. Bioorg. Med. Chem. Lett. 1999; 9: 401
    • 5a Svensson J. Strangberg K. Tuvemo T. Hamberg M. Prostaglandins 1977; 14: 425
    • 5b Juniper EF. Frith PA. Hargreave FE. Thorax 1981; 36: 575
  • 6 Zahavi J. Zahavi M. Thromb. Haemost. 1985; 53: 105
  • 7 Choi M. Jo H. Park H.-J. Kumar AS. Lee J. Yunb J. Kim Y. Han S. Jung J.-K. Cho J. Lee K. Kwak J.-H. Lee H. Bioorg. Med. Chem. Lett. 2015; 25: 2545
    • 8a Hayden MS. Ghosh S. Genes Dev. 2004; 18: 2195
    • 8b Bonizzi G. Karin M. Trends Immunol. 2004; 25: 280
    • 8c Shinkura R. Kitada K. Matsuda F. Tashiro K. Ikuta K. Suzuki M. Kogishi K. Serikawa T. Honjo T. Nat. Genet. 1999; 22: 74
  • 9 Chapleo CB. Myers PL. Butler RC. M. Davis JA. Doxey JC. Higgins SD. Myers M. Roach AG. Smith CF. C. Stillings MR. Welbourn AP. J. Med. Chem. 1984; 27: 570
    • 10a Sharpless KB. Michaelson RC. J. Am. Chem. Soc. 1973; 95: 6136
    • 10b Sharpless KB. Verhoeven TR. Aldrichimica Acta 1979; 12: 63
    • 10c Itoh T. Jitsukawa K. Kaneda K. Teranishi S. J. Am. Chem. Soc. 1979; 101: 159
  • 11 Lattanzi A. Scettri A. Synlett 2002; 942
  • 12 Tinsley SW. J. Org. Chem. 1959; 24: 1197
  • 13 Hamamoto H. Suzuki Y. Takahashi H. Ikegami S. Adv. Synth. Catal. 2007; 349: 2685
    • 14a Limnios D. Kokotos CG. ACS Catal. 2013; 3: 2239
    • 14b Limnios D. Kokotos CG. Chem. Eur. J. 2014; 20: 559
    • 14c Limnios D. Kokotos CG. J. Org. Chem. 2014; 79: 4270
    • 14d Theodorou A. Limnios D. Kokotos CG. Chem. Eur. J. 2015; 21: 5238
    • 14e Voutyritsa E. Triandafillidi I. Kokotos CG. Synthesis 2016; 48: 917
    • 14f Voutyritsa E. Theodorou A. Kokotou MG. Kokotos CG. Green Chem. 2017; 19: 1291
    • 14g Theodorou A. Kokotos CG. Green Chem. 2017; 19: 670
    • 14h Triandafillidi I. Kokotos CG. Org. Lett. 2017; 19: 106
    • 14i Theodorou A. Kokotos CG. Adv. Synth. Catal. 2017; 359: in press; DOI: 10.1002/adsc.201601262
    • 14j Voutyritsa E. Theodorou A. Kokotos CG. Org. Biomol. Chem. 2016; 14: 5708
    • 14k Theodorou A. Triandafillidi I. Kokotos CG. Eur. J. Org. Chem. 2017; 1502
  • 15 Bhoga U. Tetrahedron Lett. 2005; 46: 5239
  • 16 Gaudin J.-M. de Saint Laumer J.-Y. Eur. J. Org. Chem. 2015; 1437
  • 17 Sviridov SI. Vasil’ev AA. Sergovskaya NL. Chirskaya MV. Shorshnev SV. Tetrahedron 2006; 62: 2639