Synlett 2017; 28(20): 2759-2764
DOI: 10.1055/s-0036-1589007
letter
© Georg Thieme Verlag Stuttgart · New York

Reusable and Magnetic Palladium and Copper Oxide Catalysts in Direct ortho and meta Arylation of Anilide Derivatives

Suhelen Vásquez-Céspedes
a   Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149 Münster, Germany   Email: glorius@uni-muenster.de
,
Michael Holtkamp
b   Westfälische Wilhelms-Universität Münster, Instituts für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
,
Uwe Karst
b   Westfälische Wilhelms-Universität Münster, Instituts für Anorganische und Analytische Chemie, Corrensstraße 30, 48149 Münster, Germany
,
a   Westfälische Wilhelms-Universität Münster, Organisch-Chemisches Institut, Corrensstrasse 40, 48149 Münster, Germany   Email: glorius@uni-muenster.de
› Author Affiliations
Further Information

Publication History

Received: 27 February 2017

Accepted after revision: 27 March 2017

Publication Date:
02 May 2017 (online)


Dedicated to Prof. Victor Snieckus on the occasion of his 80th birthday

Abstract

We report a general, direct C–H arylation of anilide derivatives using reusable palladium or copper oxide on magnetite as heterogeneous precatalysts. Highly selective ortho and meta arylations are achieved using electronically and sterically diverse diaryliodonium salts. Catalytically active soluble species from the heterogeneous precursors were detected by experimental techniques. Preliminary mechanistic investigation suggests different reaction pathways for each of the catalysts.

Supporting Information

 
  • References and Notes

    • 1a Gensch T. Hopkinson MN. Glorius F. Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 1b Song G. Li X. Acc. Chem. Res. 2015; 48: 1007
    • 1c Ye B. Cramer N. Acc. Chem. Res. 2015; 48: 1308
    • 1d Ackermann L. Acc. Chem. Res. 2014; 47: 281
    • 1e Kuhl N. Schroeder N. Glorius F. Adv. Synth. Catal. 2014; 356: 1443
    • 1f Patureau FW. Wencel-Delord J. Glorius F. Aldrichimica Acta 2012; 45: 31
    • 1g Kuhl N. Hopkinson MN. Wencel-Delord J. Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 1h Arockiam PB. Bruneau C. Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 1i Neufeldt SR. Sanford MS. Acc. Chem. Res. 2012; 45: 936
    • 1j Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 1k Brückl T. Baxter RD. Ishihara Y. Baran PS. Acc. Chem. Res. 2012; 45: 826
    • 1l Cho SH. Kim JY. Kwak J. Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 1m Engle KM. Mei T.-S. Wasa M. Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 2a Hassan J. Sévignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev. 2002; 102: 1359
    • 2b Alberico D. Scott ME. Lautens M. Chem. Rev. 2007; 107: 174
    • 2c Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
  • 3 Cordovilla C. Bartolomé C. Martínez-Ilarduya JM. Espinet P. ACS Catal. 2015; 5: 3040
  • 4 Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
  • 5 Li W.-N. Wang Z.-L. RSC Adv. 2013; 3: 25565
  • 6 Sambiagio C. Marsden SP. Blacker AJ. McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
  • 7 Podgorsek A. Zupan M. Iskra J. Angew. Chem. Int. Ed. 2009; 48: 8424
    • 8a Mousseau JJ. Charette AB. Acc. Chem. Res. 2013; 46: 412
    • 8b Daugulis O. Do H.-Q. Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 9a Vaccaro L. Santoro S. Ackermann L. Kozhushkov S. Green Chem. 2016; 18: 3471
    • 9b Cano R. Schmidt AF. McGlacken GP. Chem. Sci. 2015; 6: 5338
    • 9c Reay AJ. Fairlamb IJ. S. Chem. Commun. 2015; 51: 16289
    • 9d Djakovitch L. Felpin F.-X. ChemCatChem 2014; 6: 2175
    • 10a Vásquez-Céspedes S. Ferry A. Candish L. Glorius F. Angew. Chem. Int. Ed. 2015; 54: 5772
    • 10b Collins KD. Honeker R. Vásquez-Céspedes S. Tang D.-TD. Glorius F. Chem. Sci. 2015; 6: 1816
    • 10c Tang D.-TD. Collins KD. Ernst JB. Glorius F. Angew. Chem. Int. Ed. 2014; 53: 1809
    • 10d Tang D.-TD. Collins KD. Glorius F. J. Am. Chem. Soc. 2013; 135: 7450
  • 11 Vásquez-Céspedes S. Chepiga KM. Möller N. Schäfer AH. Glorius F. ACS Catal. 2016; 6: 5954
    • 12a Perumgani PC. Parvathaneni SP. Keesara S. Mandapati MR. J. Organomet. Chem. 2016; 822: 189
    • 12b Monguchi Y. Okami H. Ichikawa T. Nozaki K. Maejima T. Oumi Y. Sawama Y. Sajiki H. Adv. Synth. Catal. 2016; 358: 3145
    • 13a Ciana C.-L. Phipps RJ. Brandt JR. Meyer F.-M. Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 458
    • 13b Duong HA. Gilligan RE. Cooke ML. Phipps RJ. Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 463
    • 13c Phipps RJ. Gaunt MJ. Science 2009; 323: 1593
    • 14a Daugulis O. Zaitsev VG. Angew. Chem. Int. Ed. 2005; 44: 4046

    • For related palladium-based ortho arylation of anilides, see:
    • 14b Bjorsvik H.-R. Elumalai V. Eur. J. Org. Chem. 2016; 5474
    • 14c Li D. Xu N. Zhang Y. Wang L. Chem. Commun. 2014; 50: 14862
    • 14d Mousseau JJ. Vallee F. Lorion MM. Charette AB. J. Am. Chem. Soc. 2010; 132: 14412
    • 14e Brasche G. García-Fortanet J. Buchwald SL. Org. Lett. 2008; 10: 2207

    • For examples of palladium-based heterogeneous precatalysts on direct arylation reactions, see:
    • 14f Reay A. Neumann L. Fairlamb IJ. S. Synlett 2016; 27: 1211
    • 14g Williams TJ. Reay AJ. Whitwood AC. Fairlamb IJ. S. Chem. Commun. 2014; 50: 3052
    • 14h Williams TJ. Fairlamb IJ. S. Tetrahedron Lett. 2013; 54: 2906

      For examples of copper-based heterogeneous precatalysts on direct arylation reactions, see:
    • 15a Mathew BP. Yang HJ. Jeon H. Lee JH. Kim JC. Shin TJ. Myung K. Kwak SK. Kwak JH. Hong SY. J. Mol. Catal. A: Chem. 2016; 417: 64
    • 15b Székely A. Sinai Á. Tóth E. Novák Z. Synthesis 2014; 46: 1871
    • 15c Lee E.-Y. Park J.-W. ChemCatChem 2011; 3: 1127
  • 16 Ranganath KV. S. Kloesges J. Schäfer AH. Glorius F. Angew. Chem. Int. Ed. 2010; 49: 7786
  • 17 Holtkamp M. Wehe CA. Blaske F. Holtschulte C. Sperling M. Karst U. J. Anal. At. Spectrom. 2012; 27: 1799
    • 18a Eremin DB. Ananikov VP. Coord. Chem. Rev. 2017; in press; DOI: DOI 10.1016/j.ccr.2016.12.021.
    • 18b Genelot M. Dufaud V. Djakovitch L. Adv. Synth. Catal. 2013; 355: 2604
    • 18c Gruttadauria M. Giacolone F. Noto R. Green Chem. 2013; 15: 2608
    • 18d Zhao F. Shirai M. Ikushima Y. Arai M. J. Mol. Catal. A: Chem. 2002; 180: 211
  • 19 Simmons EM. Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 3066
    • 20a Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 20b Zhdankin VV. Stang PJ. Chem. Rev. 2008; 108: 5299
    • 21a Gu J.-W. Guo W.-H. Zhang X. Org. Chem. Front. 2015; 2: 38
    • 21b Powers DC. Ritter T. Top. Organomet. Chem. 2011; 503: 129
  • 22 Rey V. Pierini AB. Peñéñory AB. J. Org. Chem. 2009; 74: 1223
    • 23a Hofmann J. Jasch H. Heinrich MR. J. Org. Chem. 2014; 79: 2314
    • 23b Hofmann J. Clark T. Heinrich MR. J. Org. Chem. 2016; 81: 9785
    • 23c Hofmann J. Heinrich MR. Tetrahedron Lett. 2016; 57: 4334
  • 24 Chen B. Hou X.-L. Li Y.-X. Wu Y.-D. J. Am. Chem. Soc. 2011; 133: 7668
  • 25 Baumann CG. De Ornellas S. Reeds JP. Storr TE. Williams TJ. Fairlamb IJ. S. Tetrahedron 2014; 70: 6174
  • 26 General Procedure for meta Arylation To a 10 mL Schlenk tube with a magnetic stirring bar was added N-(o-tolyl)pivalamide (57.3 mg, 0.30 mmol), diphenyliodonium triflate (258 mg, 0.60 mmol), and CuO/Fe3O4 (75 mg, 0.0083 mmol). Then, DCE (3.0 mL) was added under air and the reaction stirred at 70 °C for 22 h. The reaction mixture was allowed to cool to r.t., the catalyst was separated using a magnet, and the crude reaction was concentrated in vacuo and purified by flash column chromatography. Analytical Data for 3a 1H NMR (300 MHz, CDCl3): δ = 8.21 (d, J = 1.8, 1 H), 7.65–7.57 (m, 2 H), 7.45–7.36 (m, 2 H), 7.35–7.21 (m, 4 H), 2.30 (s, 3 H), 1.37 (s, 9 H). 13C NMR (75 MHz, CDCl3): δ = 176.67, 140.79, 140.12, 136.36, 130.86, 128.77, 127.50, 127.31, 127.24, 123.49, 121.44, 39.98, 27.89, 17.47.
  • 27 General Procedure for ortho Arylation To a 10 mL Schlenk tube with a magnetic stirring bar was added N-(o-tolyl)pivalamide (57.3 mg, 0.30 mmol), diphenyliodonium triflate (193.5 mg, 0.45 mmol), and Pd/Fe3O4 (90 mg, 0.014 mmol). Then, DCE (3.0 mL) was added under air and the reaction stirred at 70 °C for 22 h. The reaction mixture was allowed to cool to r.t., the catalyst separated using a magnet, and the crude reaction was concentrated in vacuo and purified by flash column chromatography. Analytical Data for 4a 1H NMR (400 MHz, CDCl3): δ = 7.46–7.36 (m, 3 H), 7.35–7.31 (m, 2 H), 7.31–7.27 (m, 2 H), 7.23–7.17 (m, 1 H), 6.84 (s, 1 H), 2.31 (s, 3 H), 1.15 (s, 9 H). 13C NMR (101 MHz, CDCl3): δ = 176.82, 139.73, 139.65, 136.72, 132.94, 130.20, 129.11, 128.37, 127.74, 127.49, 127.12, 39.22, 27.63, 18.64.