Synthesis 2017; 49(16): 3619-3632
DOI: 10.1055/s-0036-1589013
paper
© Georg Thieme Verlag Stuttgart · New York

Manipulating a Multicomponent Reaction: A Straightforward Approach to Chromenopyrazole Hybrid Scaffolds

Paraskevi M. Kasapidou
a   Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
b   Medway School of Pharmacy, Universities of Greenwich and Kent at Medway, Chatham Maritime, Kent, ME4 4TB, UK
,
Tryfon Zarganes-Tzitzikas
a   Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
c   Department of Pharmacy, University of Groningen, Deusinglaan 1, 9700 AD Groningen, The Netherlands   Email: k.neochoritis@rug.nl
,
Constantinos A. Tsoleridis
a   Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
,
Julia Stephanidou-Stephanatou
a   Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
,
Constantinos G. Neochoritis*
a   Laboratory of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
c   Department of Pharmacy, University of Groningen, Deusinglaan 1, 9700 AD Groningen, The Netherlands   Email: k.neochoritis@rug.nl
› Author Affiliations
Further Information

Publication History

Received: 29 January 2017

Accepted after revision: 28 March 2017

Publication Date:
09 May 2017 (online)


Dedicated to Prof. C. A. Tsoleridis on the occasion of his 67th birthday

Abstract

An easy access to hybrid bioactive molecules, such as the chromenopyrazoles, is described based on the three-component reactions of 3-formylchromones, arylhydrazines, and acetylenedicarboxylates. By manipulating the reaction, four different scaffolds can be derived in an easy, versatile, and robust fashion. To underscore the potential, generality, and diversity that can be generated, representative libraries of each scaffold were synthesized. Moreover, a comprehensive NMR analysis with full assignment of all 1H and 13C NMR chemical shifts has been performed.

Supporting Information

 
  • References

  • 1 Editorial: Nat. Chem. Biol. 2007; 3: 433
  • 2 Editorial: Nat. Chem. Biol. 2009; 5: 127
  • 3 Dahlin JL. Nissink JW. M. Strasser JM. Francis S. Higgins L. Zhou H. Zhang Z. Walters MA. J. Med. Chem. 2015; 58: 2091
  • 4 Macarron R. Banks MN. Bojanic D. Burns DJ. Cirovic DA. Garyantes T. Green DV. S. Hertzberg RP. Janzen WP. Paslay JW. Schopfer U. Sittampalam GS. Nat. Rev. Drug Discovery 2011; 10: 188
  • 5 Brown DG. Boström J. J. Med. Chem. 2016; 59: 4443
  • 6 Scannell JW. Bosley J. PLoS One 2016; 11: 1
  • 7 Ekins S. Mestres J. Testa B. Br. J. Pharmacol. 2007; 152: 9
  • 8 Brown N. In Silico Medicinal Chemistry: Computational Methods to Support Drug Design. Royal Society of Chemistry; Cambridge: 2016
  • 9 Schneider P. Schneider G. J. Med. Chem. 2016; 59: 4077
  • 10 Wu B. Zhang Z. Noberini R. Barile E. Giulianotti M. Pinilla C. Houghten RA. Pasquale EB. Pellecchia M. Chem. Biol. 2013; 20: 19
  • 11 Orita M. Ohno K. Niimi T. Drug Discovery Today 2009; 14: 321
  • 12 Ohnmacht SA. Neidle S. Bioorg. Med. Chem. Lett. 2014; 24: 2602
  • 13 Larsson A. Jansson A. Åberg A. Nordlund P. Curr. Opin. Chem. Biol. 2011; 15: 482
  • 14 Tiefenbrunn T. Forli S. Happer M. Gonzalez A. Tsai Y. Soltis M. Elder JH. Olson AJ. Stout CD. Chem. Biol. Drug Des. 2014; 83: 141
  • 15 Mashalidis EH. Śledź P. Lang S. Abell C. Nat. Protoc. 2013; 8: 2309
  • 16 Rodrigues T. Reker D. Kunze J. Schneider P. Schneider G. Angew. Chem. Int. Ed. 2015; 54: 10516
  • 17 Dömling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
  • 18 Dömling A. Wang W. Wang K. Chem. Rev. 2012; 112: 3083
  • 19 Alvim HG. O. da Silva Junior EN. Neto BA. D. RSC Adv. 2014; 4: 54282
  • 20 Slobbe P. Ruijter E. Orru RV. A. MedChemComm 2012; 3: 1189
  • 21 Hulme C. Ayaz M. Martinez-Ariza G. Medda F. Shaw A. In Small Molecule Medicinal Chemistry: Strategies and Technologies . Czechtizky W. Hamley P. John Wiley; Hoboken: 2015: 145
  • 22 Hulme C. In Multicomponent Reactions . Zhu J. Bienayme H. Wiley-VCH; Weinheim: 2005: 311
  • 23 Hulme C. Gore V. Curr. Med. Chem. 2003; 10: 51
  • 24 Duarte CD. Barreiro EJ. Fraga CA. M. Mini Rev. Med. Chem. 2007; 7: 1108
  • 25 Bräse S. Privileged Scaffolds in Medicinal Chemistry . Royal Society of Chemistry; Cambridge: 2016
  • 26 Cavalli A. Bolognesi ML. Minarini A. Rosini M. Tumiatti V. Recanatini M. Melchiorre C. J. Med. Chem. 2008; 51: 347
  • 27 Messer WS. Curr. Pharm. Des. 2004; 10: 2015
  • 28 Zhan P. Liu X. Curr. Pharm. Des. 2009; 15: 1893
  • 29 Decker M. Curr. Med. Chem. 2011; 18: 1464
  • 30 Keri RS. Budagumpi S. Pai RK. Balakrishna RG. Eur. J. Med. Chem. 2014; 78: 340
  • 31 Schmidt A. Dreger A. Curr. Org. Chem. 2011; 15: 1423
  • 32 Morales P. Gómez-Cañas M. Navarro G. Hurst DP. Carrillo-Salinas FJ. Lagartera L. Pazos R. Goya P. Reggio PH. Guaza C. Franco R. Fernández-Ruiz J. Jagerovic N. J. Med. Chem. 2016; 59: 6753
  • 33 Cumella J. Hernádez-Folgado L. Girón R. Sánchez E. Morales P. Hurst DP. Gómez-Cañas M. Gómez-Ruiz M. Pinto DC. G. A. Goya P. Reggio PH. Martin MI. Fernández-Ruiz J. Silva AM. S. Jagerovic N. ChemMedChem 2012; 7: 452
  • 34 Higashi Y. Jitsuiki D. Chayama K. Yoshizumi M. Recent Pat. Cardiovasc. Drug Discovery 2006; 1: 85
  • 35 Shaveta, Singh A. Kaur M. Sharma S. Bhatti R. Singh P. Eur. J. Med. Chem. 2014; 77: 185
  • 36 Singh P. Kaur M. Holzer W. Eur. J. Med. Chem. 2010; 45: 4968
  • 37 Singh P. Kaur M. MedChemComm 2012; 3: 369
  • 38 Siddiqui ZN. Praveen S. Ahmad A. Khan AU. J. Enzyme Inhib. Med. Chem. 2012; 27: 84
  • 39 Baruah AK. Prajapati D. Sandhu JS. Tetrahedron 1988; 44: 1241
  • 40 Jayabal K. Paramasivan TP. Tetrahedron Lett. 2014; 55: 2010
  • 41 Lévai A. J. Heterocycl. Chem. 2002; 39: 1333
  • 42 Pinto DC. G. A. Silva AM. S. Almeida LM. P. M. Cavaleiro JA. S. Lévai A. Patonay T. J. Heterocycl. Chem. 1998; 35: 217
  • 43 Badadhe PV. Patil LR. Bhagat SS. Chate AV. Shinde DW. Nikam MD. Gill CH. J. Heterocycl. Chem. 2013; 50: 999
  • 44 Angel AJ. Finefrock AE. Williams AR. Townsend JD. Nguyen T.-HV. Hurst DR. Heldrich FJ. Beam CF. Badejo IT. J. Heterocycl. Chem. 1999; 36: 1231
  • 45 Santos CM. M. Silva AM. S. Jekő J. Lévai A. ARKIVOC 2012; (v): 265
  • 46 Sosnovskikh VY. Irgashev RA. Moshkin VS. Kodess MI. Russ. Chem. Bull. 2008; 57: 2146
  • 47 Madje BR. Shindalkar SS. Ware MN. Shingare MS. ARKIVOC 2005; (xiv): 82
  • 48 Karale BK. Chavan VP. Mane AS. Hangarge RV. Gill CH. Shingare MS. Synth. Commun. 2002; 32: 497
  • 49 Parveen M. Azaz S. Malla AM. Ahmad F. Ahmad M. Gupta M. RSC Adv. 2016; 6: 148
  • 50 Terzidis MA. Stephanidou-Stephanatou J. Tsoleridis CA. Terzis A. Raptopoulou CP. Psycharis V. Tetrahedron 2010; 66: 947
  • 51 Terzidis MA. Stephanidou-Stephanatou J. Tsoleridis CA. Tetrahedron Lett. 2009; 50: 1196
  • 52 Terzidis MA. Tsoleridis CA. Stephanidou-Stephanatou J. Synlett 2009; 229
  • 53 Eleftheriadis N. Kasapidou PM. Stephanidou-Stephanatou J. Tsoleridis CA. Hadjipavlou-Litina DJ. Kontogiorgis C. Pritsa A. Papadopoulos A. Synthesis 2015; 47: 1390
  • 54 Terzidis MA. Stephanidou-Stephanatou J. Tsoleridis CA. J. Org. Chem. 2010; 75: 1948
  • 55 Papafilippou A. Terzidis MA. Stephanidou-Stephanatou J. Tsoleridis CA. Tetrahedron Lett. 2011; 52: 1306
  • 56 Zarganes-Tzitzikas T. Terzidis MA. Stephanidou-Stephanatou J. Tsoleridis CA. Kostakis GE. J. Org. Chem. 2011; 76: 9008
  • 57 Terzidis MA. Zarganes-Tzitzikas T. Tsimenidis C. Stephanidou-Stephanatou J. Tsoleridis CA. Kostakis GE. J. Org. Chem. 2012; 77: 9018
  • 58 Tu XC. Feng H. Tu MS. Jiang B. Wang SL. Tu SJ. Tetrahedron Lett. 2012; 53: 3169
  • 59 Zohreh N. Alizadeh A. Tetrahedron 2011; 67: 4595
  • 60 Safaei S. Mohammadpoor-Baltork I. Khosropour AR. Moghadam M. Tangestaninejad S. Mirkhani V. Adv. Synth. Catal. 2012; 354: 3095
  • 61 Neochoritis C. Zarganes-Tzitzikas T. Stephanidou-Stephanatou J. Synthesis 2014; 46: 537
  • 62 Tu XC. Fan W. Jiang B. Wang SL. Tu SJ. Tetrahedron 2013; 69: 6100
  • 63 Plaskon AS. Grygorenko OO. Ryabukhin SV. Tetrahedron 2012; 68: 2743
  • 64 Ma C. Li Y. Wen P. Yan R. Ren Z. Huang G. Synlett 2011; 1321
  • 65 Zora M. Kivrak A. Yazici C. J. Org. Chem. 2011; 76: 6726
  • 66 Li DY. Mao XF. Chen HJ. Chen GR. Liu PN. Org. Lett. 2014; 16: 3476
  • 67 Sabitha G. SatheeshBabu R. Yadav JS. Synth. Commun. 1998; 28: 4571
  • 68 Ibrahim MA. El-Gohary NM. Heterocycles 2014; 89: 413
  • 69 Galarraga E. Urdaneta N. Gutierrez KJ. Herrera JC. Z. Naturforsch., B 2015; 70: 305
  • 70 Wang XS. Zhou J. Yang K. Yao CS. Tetrahedron Lett. 2010; 51: 5721
  • 71 Łazarenkow A. Nawrot-Modranka J. Brzezińska E. Krajewska U. Różalski M. Med. Chem. Res. 2012; 21: 1861