Synthesis 2017; 49(21): 4731-4737
DOI: 10.1055/s-0036-1589018
feature
© Georg Thieme Verlag Stuttgart · New York

Synthetic Access to 3,5,7-Trisubstituted Indoles Enabled by Iridium­-Catalyzed C–H Borylation

Andrew S. Eastabrook
School of Chemical Sciences, 23 Symonds Street, University of Auckland, Auckland, New Zealand   Email: j.sperry@auckland.ac.nz
,
School of Chemical Sciences, 23 Symonds Street, University of Auckland, Auckland, New Zealand   Email: j.sperry@auckland.ac.nz
› Author Affiliations
Further Information

Publication History

Received: 13 March 2017

Accepted after revision: 10 April 2017

Publication Date:
08 May 2017 (online)


Published as part of the Special Topic Modern Strategies for Borylation in Synthesis

Abstract

A one-pot conversion of 3-substituted indoles into their 5,7-diboryl derivatives is reported. The simultaneous functionalization of the C5-H and C7-H sites is achieved using an iridium-catalyzed triborylation-protodeborylation sequence. The 5,7-diborylindoles are useful intermediates that can be readily derivatized into a variety of indoles possessing the rare 3,5,7-trisubstitution pattern, including the natural product (+)-plakohypaphorine C.

Supporting Information

 
  • References

    • 1a Gribble GW. Indole Ring Synthesis: From Natural Products to Drug Discovery. Wiley; New York: 2016
    • 1b Sundberg RJ. The Chemistry of Indoles . Academic Press; New York: 1970
    • 1c Ban Y. Murakami Y. Iwasawa Y. Tsuchiya M. Takano N. Med. Res. Rev. 1988; 8: 231
    • 1d Sundberg RJ. Indoles . Academic Press; New York: 1996
    • 1e Pindur U. Lemster T. Curr. Med. Chem. 2001; 8: 1681
    • 1f Ramirez A. Garcia-Rubio S. Curr. Med. Chem. 2003; 10: 1891
    • 1g Kochanowska-Karamyan AJ. Hamann MT. Chem. Rev. 2010; 110: 4489
    • 2a Taylor RD. M. MacCoss M. Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 2b Vitaku E. Smith DT. Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 2c de Sá Alves FR. Barreiro EJ. Fraga CA. M. Mini. Rev. Med. Chem. 2009; 9: 782
    • 3a Vicente R. Org. Biomol. Chem. 2011; 9: 6469
    • 3b Inman M. Moody CJ. Chem. Sci. 2013; 4: 29
    • 3c StC Black D. Channon MF. Clayton KA. Condie GC. Harper JB. Kumar N. Pchalek K. Wahyuningsih TD. ARKIVOC 2006; (vii): 67
    • 4a Charrier N. Demont E. Dunsdon R. Maile G. Naylor A. O’Brien A. Redshaw S. Theobald P. Vesey D. Walter D. Synlett 2005; 3071
    • 4b Charrier N. Demont E. Dunsdon R. Maile G. Naylor A. O’Brien A. Redshaw S. Theobald P. Vesey D. Walter D. Synthesis 2006; 3467
    • 5a Zhang J. Yin Z. Leonard P. Wu J. Sioson K. Liu C. Lapo R. Zheng S. Angew. Chem. Int. Ed. 2013; 52: 1753
    • 5b Feu KS. Deobald AM. Narayanaperumal S. Corrêa AG. Paixão MW. Eur. J. Org. Chem. 2013; 5917
    • 5c Boyd EM. Sperry J. Org. Lett. 2015; 17: 1344
    • 5d Jensen T. Pedersen H. Bang-Andersen B. Madsen R. Jørgensen M. Angew. Chem. Int. Ed. 2008; 47: 888
    • 5e Outlaw VK. Townsend CA. Org. Lett. 2014; 16: 6334
    • 5f Garden SJ. da Silva RB. Pinto AC. Tetrahedron 2002; 58: 8399
    • 6a Shen F. Tyagarajan S. Perera D. Krska SW. Maligres PE. Smith III MR. Maleczka RE. Jr. Org. Lett. 2016; 18: 1554
    • 6b Xu L. Zhang C. He Y. Tan L. Ma D. Angew. Chem. Int. Ed. 2016; 55: 321
    • 6c Song Z. Antonchick AP. Org. Biomol. Chem. 2016; 14: 4804
    • 6d Frese M. Sewald N. Angew. Chem. Int. Ed. 2015; 54: 298
    • 6e Winkelblech J. Li S.-M. ChemBioChem 2014; 15: 1030
  • 7 For the enzymatic prenylation of a 7-substituted tryptophan at C5, see: Yu X. Liu Y. Xie X. Zheng X.-D. Li S.-M. J. Biol. Chem. 2012; 287: 1371
    • 8a Plancq B. Lafantaisie M. Companys S. Maroun C. Ollevier T. Org. Biomol. Chem. 2013; 11: 7463
    • 8b Taheri A. Lai B. Cheng C. Gu Y. Green Chem. 2015; 17: 812
    • 8c Komnatnyy VV. Taveras KM. Nandurkar NS. Le Quement ST. Givskov M. Nielsen TE. Eur. J. Org. Chem. 2015; 3524
    • 9a Ishiyama T. Takagi J. Hartwig JF. Miyaura N. Angew. Chem. Int. Ed. 2002; 41: 3056
    • 9b Sulanga P. Chotana GA. Holmes D. Reichle RC. Maleczka RE. Jr. Smith III MR. J. Am. Chem. Soc. 2006; 128: 15552
    • 9c Lo WF. Kaiser HM. Spannenberg A. Beller M. Tse MK. Tetrahedron Lett. 2007; 48: 371
    • 9d Mkhalid IA. I. Barnard JH. Marder TB. Murphy JM. Hartwig JF. Chem. Rev. 2010; 110: 890
    • 9e Robbins DW. Boebel TA. Hartwig JF. J. Am. Chem. Soc. 2010; 132: 4068
    • 9f Hartwig JF. Chem. Soc. Rev. 2011; 40: 1992
    • 9g Hartwig JF. Acc. Chem. Res. 2012; 45: 864
    • 9h Larsen MA. Hartwig JF. J. Am. Chem. Soc. 2014; 136: 4287
  • 10 Eastabrook AS. Sperry J. Aust. J. Chem. 2015; 68: 1810
    • 11a Loach RP. Fenton OS. Amaike K. Siegel DS. Ozkal E. Movassaghi M. J. Org. Chem. 2014; 79: 11254
    • 11b Amaike K. Loach RP. Movassaghi M. Org. Synth. 2015; 92: 373
    • 11c Kallepalli VA. Gore KA. Shi F. Sanchez L. Chotana GA. Miller SL. Maleczka RE. Jr. Smith III MR. J. Org. Chem. 2015; 80: 8341
  • 12 Partridge BM. Hartwig JF. Org. Lett. 2013; 15: 140
  • 13 Quach TD. Batey RA. Org. Lett. 2003; 5: 1381
  • 14 Campagnuolo C. Fattorusso E. Taglialatela-Scafati O. Eur. J. Org. Chem. 2003; 284
  • 15 Borelli F. Campagnuolo C. Capasso R. Fattorusso E. Taglialatela-Scafati O. Eur. J. Org. Chem. 2004; 3227
  • 16 See the Supporting Information for full details.