Synlett 2017; 28(18): 2489-2494
DOI: 10.1055/s-0036-1589048
letter
© Georg Thieme Verlag Stuttgart · New York

Thieme Chemistry Journals Awardees – Where Are They Now?
Titanium-Catalyzed Hydroaminoalkylation of Vinylsilanes and a One-Pot Procedure for the Synthesis of 1,4-Benzoazasilines

Lars H. Lühning, Michael Rosien, Sven Doye*
  • Institut für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Straße 9–11, 26111 Oldenburg, Germany   Email: doye@uni-oldenburg.de
Further Information

Publication History

Received: 29 March 2017

Accepted after revision: 10 May 2017

Publication Date:
18 July 2017 (eFirst)

Abstract

Vinylsilanes undergo intermolecular alkene hydroaminoalkylation with secondary amines in the presence of a titanium mono(aminopyridinato) catalyst to give the branched hydroaminoalkylation products with high regioselectivity. Corresponding reactions of a suitable (2-bromophenyl)vinylsilane combined with a subsequent intramolecular Buchwald–Hartwig amination result in the development of an elegant one-pot procedure for the synthesis of 1,4-benzoazasilines.

Supporting Information

 
  • References and Notes


    • For reviews on the hydroaminoalkylation of alkenes, see:
    • 1a Roesky PW. Angew. Chem. Int. Ed. 2009; 48: 4892 ; Angew. Chem. 2009, 121, 4988
    • 1b He T.-Q. Zheng X.-J. Cai H. Xue Z.-L. Chin. J. Inorg. Chem. 2014; 30: 53
    • 1c Chong E. Garcia P. Schafer LL. Synthesis 2014; 46: 2884

      Group 5 metal catalysts:
    • 2a Clerici MG. Maspero F. Synthesis 1980; 305
    • 2b Nugent WA. Ovenall DW. Holmes SJ. Organometallics 1983; 2: 161
    • 2c Herzon SB. Hartwig JF. J. Am. Chem. Soc. 2007; 129: 6690
    • 2d Herzon SB. Hartwig JF. J. Am. Chem. Soc. 2008; 130: 14940
    • 2e Eisenberger P. Ayinla RO. Lauzon JM. P. Schafer LL. Angew. Chem. Int. Ed. 2009; 48: 8361 ; Angew. Chem. 2009, 121, 8511
    • 2f Eisenberger P. Schafer LL. Pure Appl. Chem. 2010; 82: 1503
    • 2g Zi G. Zhang F. Song H. Chem. Commun. 2010; 46: 6296
    • 2h Reznichenko AL. Emge TJ. Audörsch S. Klauber EG. Hultzsch KC. Schmidt B. Organometallics 2011; 30: 921
    • 2i Reznichenko AL. Hultzsch KC. J. Am. Chem. Soc. 2012; 134: 3300
    • 2j Garcia P. Lau YY. Perry MR. Schafer LL. Angew. Chem. Int. Ed. 2013; 52: 9144 ; Angew. Chem. 2013, 125, 9314
    • 2k Zhang Z. Hamel J.-D. Schafer LL. Chem. Eur. J. 2013; 19: 8751
    • 2l Dörfler J. Doye S. Eur. J. Org. Chem. 2014; 2790
    • 2m Chong E. Brandt JW. Schafer LL. J. Am. Chem. Soc. 2014; 136: 10898

      Ruthenium catalysts:
    • 3a Jun C.-H. Hwang D.-C. Na S.-J. Chem. Commun. 1998; 1405
    • 3b Chatani N. Asaumi T. Yorimitsu S. Ikeda T. Kakiuchi F. Murai S. J. Am. Chem. Soc. 2001; 123: 10935
  • 4 Iridium catalysts: Pan S. Endo K. Shibata T. Org. Lett. 2011; 13: 4692
  • 5 Zirconium catalysts: Bexrud JA. Eisenberger P. Leitch DC. Payne PR. Schafer LL. J. Am. Chem. Soc. 2009; 131: 2116

    • Titanium catalysts:
    • 6a Müller C. Saak W. Doye S. Eur. J. Org. Chem. 2008; 2731
    • 6b Kubiak R. Prochnow I. Doye S. Angew. Chem. Int. Ed. 2009; 48: 1153 ; Angew. Chem. 2009, 121, 1173
    • 6c Prochnow I. Kubiak R. Frey ON. Beckhaus R. Doye S. ChemCatChem. 2009; 1: 162
    • 6d Kubiak R. Prochnow I. Doye S. Angew. Chem. Int. Ed. 2010; 49: 2626 ; Angew. Chem. 2010, 122, 2683
    • 6e Prochnow I. Zark P. Müller T. Doye S. Angew. Chem. Int. Ed. 2011; 50: 6401 ; Angew. Chem. 2011, 123, 6525
    • 6f Jaspers D. Saak W. Doye S. Synlett 2012; 23: 2098
    • 6g Dörfler J. Doye S. Angew. Chem. Int. Ed. 2013; 52: 1806 ; Angew. Chem. 2013, 125, 1851
    • 6h Preuß T. Saak W. Doye S. Chem. Eur. J. 2013; 19: 3833
    • 6i Chong E. Schafer LL. Org. Lett. 2013; 15: 6002
    • 6j Dörfler J. Preuß T. Schischko A. Schmidtmann M. Doye S. Angew. Chem. Int. Ed. 2014; 53: 7918 ; Angew. Chem. 2014, 126, 8052
    • 6k Dörfler J. Preuß T. Brahms C. Scheuer D. Doye S. Dalton Trans. 2015; 44: 12149
    • 6l Dörfler J. Bytyqi B. Hüller S. Mann NM. Brahms C. Schmidtmann M. Doye S. Adv. Synth. Catal. 2015; 357: 2265
    • 6m Lühning LH. Brahms C. Nimoth JP. Schmidtmann M. Doye SZ. Anorg. Allg. Chem. 2015; 641: 2071
    • 6n Manßen M. Lauterbach N. Dörfler J. Schmidtmann M. Saak W. Doye S. Beckhaus R. Angew. Chem. Int. Ed. 2015; 54: 4383 ; Angew. Chem. 2015, 127, 4458
    • 6o Weers M. Lühning LH. Lührs V. Brahms C. Doye S. Chem. Eur. J. 2017; 23: 1237
    • 6p Lühning LH. Strehl J. Schmidtmann M. Doye S. Chem. Eur. J. 2017; 23: 4197
  • 7 Elkin T. Kulkarni NV. Tumanskii B. Botoshansky M. Shimon LJ. W. Eisen MS. Organometallics 2013; 32: 6337

    • For reviews on the Buchwald-Hartwig amination, see:
    • 8a Hartwig JF. Nature (London, U.K.) 2008; 455: 314
    • 8b Surry DS. Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338 ; Angew. Chem. 2008, 120, 6438
    • 8c Schlummer B. Scholz U. Adv. Synth. Catal. 2004; 346: 1599
    • 8d Elkema R. Anderson HL. Macromolecules 2008; 41: 9930

      For reviews on organosilicon compounds with medicinal applications, see:
    • 9a Mills JS. Showell GA. Expert Opin. Invest. Drugs 2004; 13: 1149
    • 9b Franz AK. Wilson SO. J. Med. Chem. 2013; 56: 388
    • 10a Aoyama T. Sato Y. Suzuki T. Shirai H. J. Organomet. Chem. 1978; 153: 193
    • 10b Francois C. Boddaert T. Durandetti M. Querolle O. Van Hijfte L. Meerpoel L. Angibaud P. Maddaluno J. Org. Lett. 2012; 14: 2074
  • 11 Geyer M. Karlsson O. Baus JA. Wellner E. Tacke R. J. Org. Chem. 2015; 80: 5804
  • 12 General Procedure for the One-Pot Synthesis of 1,4-Benzoazasilines, as Exemplified by the Synthesis of Product 44a An oven-dried Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar was transferred into a nitrogen-filled glovebox and charged with catalyst III (154 mg, 0.20 mmol, 10 mol%) and toluene (0.5 mL). Afterwards, N-methylaniline (3, 214 mg, 2.00 mmol), (ortho-bromophenyl)dimethylvinylsilane (37, 531 mg, 2.20 mmol), and toluene (0.5 mL) were added. After the mixture had been heated to 160 °C for 24 h, the Schlenk tube was cooled to r.t. and transferred back into a nitrogen-filled glovebox. Then Pd2(dba)3 (46 mg, 0.05 mmol, 2.5 mol%), RuPhos (66 mg, 0.1 mmol, 7 mol%), NaOt-Bu (288 mg, 3.0 mmol), and toluene (5 mL) were added. After heating the mixture to 110 °C for additional 24 h, the crude product was purified by flash chromatography (SiO2, PE), to give 1,4-benzoazasiline 44a (420 mg, 1.57 mmol, 79%) as a colorless oil. Rf = 0.20 (SiO2, PE). 1H NMR (500 MHz, CDCl3): δ = 7.39 (dd, J= 7.2, 1.5 Hz, 1 H), 7.32 (t, J= 7.9 Hz, 2 H), 7.16 (d, J= 7.5 Hz, 2 H), 7.10–7.03 (m, 2 H), 6.83 (td, J= 7.2, 0.6 Hz, 1 H), 6.66 (d, J= 8.4 Hz, 1 H), 3.85 (dd, J= 13.1, 3.6 Hz, 1 H), 3.55 (dd, J= 13.1, 9.6 Hz, 1 H), 1.30–1.23 (m, 1 H), 1.04 (d, J= 7.5 Hz, 3 H), 0.28 (s, 3 H), 0.26 (s, 3 H) ppm. 13C{1H} NMR (125 MHz, DEPT, CDCl3): δ = 154.1 (C), 149.6 (C), 135.1 (CH), 129.5 (CH), 129.4 (CH), 124.7 (CH), 123.6 (C), 123.1 (CH), 119.2 (CH), 117.8 (CH), 57.5 (CH2), 17.9 (CH), 13.0 (CH3), –1.7 (CH3), –4.4 (CH3) ppm. 29Si{1H} NMR (99.4 MHz, INEPT, CDCl3): δ = –8.1 ppm. GC–MS (EI, 70 eV): m/z(%) = 267 (40) [M]+, 225 (100) [C14H15NSi]+, 210 (40), 180 (8), 105 (11) [C7H7N]+, 91 (5) [C6H5N]+. HRMS (EI): m/z calcd for C17H21NSi: 267.1438; found: 267.1440 [M]+. IR (ATR, neat): λ –1 = 2948, 2864, 1585, 1557, 1494, 1472, 1431, 1340, 1248, 1175, 1129, 1088, 835, 808, 722, 750, 696, 610 cm–1.