Synlett 2017; 28(17): 2291-2294
DOI: 10.1055/s-0036-1589065
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of Unsymmetrical Bis(4-Hydroxycoumarin-3-yl)methanes

Sinki Kolitaa, Leema Duttaa, Pankaj Dasb, Pulak J Bhuyan*a
  • aApplied Organic Chemistry Group, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India
  • bDepartment of Chemistry, Dibrugarh University, Dibrugarh-786004, Assam, India   Email: pulak_jyoti@yahoo.com
Further Information

Publication History

Received: 25 April 2017

Accepted after revision: 02 June 2017

Publication Date:
13 July 2017 (eFirst)

Abstract

Unsymmetrical bis(4-hydroxycoumarin-3-yl)methane derivatives have been synthesized from 4-hydroxycoumarins, aldehydes, and secondary amines via 3-(aminoalkyl)-4-hydroxycoumarin intermediates, followed by substitution.

Supporting Information

 
  • References and Notes

    • 1a Ramachary DB. Kishor M. J. Org. Chem. 2007; 72: 5056
    • 1b Yu J.-J. Wang L.-M. Liu J.-Q. Guo F.-L. Liu Y. Jiao N. Green Chem. 2010; 12: 216
    • 2a Yadav LD. Singh S. Rai VK. Green Chem. 2009; 11: 878
    • 2b Special issue: Green Solvents: Progress in Science and Application, Green Chem. 2009, 11, 603.
    • 2c Kumar A. Sharma S. Green Chem. 2011; 13: 2017
    • 2d Kumar A. Gupta G. Srivastava S. Green Chem. 2011; 13: 2459
    • 2e Tanaka K. Sugino T. Toda F. Green Chem. 2000; 2: 303
    • 2f Raston CL. Scott JL. Green Chem. 2000; 2: 49
    • 2g Anastas PT. Warner JC. Green Chemistry: Theory and Practice . Oxford University Press; Oxford; 1998
    • 3a Armstrong RW. Combs AP. Tempest PA. Brown SD. Keating TA. Acc. Chem. Res. 1996; 29: 123
    • 3b Dömling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 3c Liu F. Evans T. Das BC. Tetrahedron Lett. 2008; 49: 1578
  • 4 Li M. Zuo Z. Wen L. Wang S. J. Comb. Chem. 2008; 10: 436
  • 5 Murray RD. H. Méndez J. Brown SA. The Natural Coumarins 1982
  • 6 Kontogiorgis C. Hadjipavlou-Litina DJ. Enzym. Inhib. Med. Chem. 2003; 18: 63
  • 7 Spino C. Dodier M. Sotheeswaran S. Bioorg. Med. Chem. Lett. 1998; 8: 3475
  • 8 Kempen I. Papapostolou D. Thierry N. Pochet L. Counerotte S. Masereel B. Foidart JM. Reboud-Ravaux MJ. Noel A. Pirotte B. Br. J. Cancer. 2003; 88: 1111
  • 9 Vilar S. Quezada E. Santana L. Uriarte E. Yánez M. Fraiz N. Alcaide C. Cano E. Orallo F. Bioorg. Med. Chem. Lett. 2006; 16: 257
  • 10 Quezada E. Delogu G. Picciau C. Santana L. Podda G. Borges F. Garcia-Morales V. Viña D. Orallo F. Molecules. 2010; 15: 270
    • 11a Koppula PK. Purohit N. J. Chem. Sci. (Berlin, Ger.) 2013; 125: 1535
    • 11b Li BJ. Chiang CC. Hsu LY. J. Chin. Chem. Soc. (Weinheim, Ger.) 2010; 57: 742
    • 11c Kostova I. Momekov G. Tzanova T. Karaivanova M. Bioinorg. Chem. Appl. 2006; 25651 ; DOI: 10.1155/BCA/2006/25651
    • 11d Abdel-Aziem A. J. Heterocycl. Chem. 2015; 52: 251
    • 12a Khan KM. Iqbal S. Lodhi MA. Maharvi GM. Ullah Z. Choudhary MI. Rahman AU. Perveen S. Bioorg. Med. Chem. 2004; 12: 1963
    • 12b Manian RD. R. S. Jayashankaran J. Raghunathan R. Tetrahedron Lett. 2007; 48: 1385
    • 12c Manolov I. Moessmer CM. Nicolova I. Danchev N. Arch. Pharm. (Weinheim, Ger.) 2006; 339: 319
  • 13 Khurana JM. Kumar S. Tetrahedron Lett. 2009; 50: 4125
  • 14 Kidwai M. Bansal V. Mothsra P. Saxena S. Somvanshi RK. Day S. Singh TP. J. Mol. Catal. A: Chem. 2007; 268: 76
  • 15 Khurana JM. Kumar S. Monatsh. Chem. 2010; 141: 561
    • 16a Li W. Wang Y. Wang Z. Dai L. Wang Y. Catal. Lett. 2011; 141: 1651
    • 16b Tzani A. Douka A. Papadopoulos A. Pavlatou EA. Voutsas E. Detsi A. ACS Sustainable Chem. Eng. 2013; 1: 1180
  • 17 Mehrabi H. Abusaidi H. J. Iran. Chem. Soc. 2010; 7: 890
  • 18 Pawar B. Shinde V. Chaskar A. Green Sustainable Chem. 2013; 3: 56
  • 19 Karimian R. Piri F. Safari AA. Davarpanah SJ. J. Nanostruct. Chem. 2013; 3: 52
  • 20 Tabatabaeian K. Heidari H. Khorshidi A. Mamaghani M. Mahmoodi NO. J. Serb. Chem. Soc. 2012; 77: 407
  • 21 Siddiqui ZN. Forooq F. Catal. Sci. Technol. 2011; 1: 810
    • 22a Borah P. Naidu PS. Bhuyan PJ. Tetrahedron Lett. 2012; 53: 5034
    • 22b Majumder S. Borah P. Bhuyan PJ. Mol. Diversity 2012; 16: 279
    • 22c Borah P. Naidu PS. Majumder S. Bhuyan PJ. RSC Adv. 2013; 3: 20450
    • 22d Borah P. Bhuyan PJ. Tetrahedron Lett. 2013; 54: 6949
    • 22e Naidu PS. Kolita S. Sharma M. Bhuyan PJ. J. Org. Chem. 2015; 80: 6381
    • 22f Kolita S. Borah P. Naidu PS. Bhuyan PJ. Tetrahedron 2016; 72: 532
  • 23 Borah P. Naidu PS. Bhuyan PJ. Synth. Commun. 2015; 45: 1533
  • 24 Rao P. Konda S. Iqbal J., Oruganti S. 2012; 53: 5314
  • 25 -Hydroxy-3-[(4-hydroxy-2-oxo-2H-chromen-3-yl)(phenyl)methyl]-6-methyl-2H-chromen-2-one (6a); Typical Procedure Equimolar amounts of 4-hydroxycoumarin (1a; 0.162 g, 1 mmol), benzaldehyde (2a, 0.106 g, 1 mmol), and pyrrolidine (3; 0.071 g, 1mmol) in MeCN (5 mL) were stirred at r.t. for 2 h until the reaction was complete (TLC). During this period a precipitate appeared. 4-Hydroxy-6-methylcoumarin (5a; 0.176 g, 1 mmol) was added, and the mixture was reflux for 4.5 h until the reaction was complete (TLC). The mixture was cooled and the solid product was collected by filtration and crystallized (MeCN). The filtrate was diluted with hexane (20 mL) and passed through a short column of silica gel. The pyrrolidine that remained in the column was eluted with MeOH. Colorless crystalline solid; yield: 0.366 g (86%); mp 201 °C. IR (KBr) = 3158.6, 3023.0, 1609.2, 1649.1, 1560.3 cm–1. 1H NMR (500 MHz, DMSO-d 6): δ = 2.30 (s, 3 H), 6.16 (s, 1 H), 7.30–8.19 (m, 12 H), 11.58 (s, 2 H). 13C NMR (125 MHz, DMSO-d 6): δ = 20.8, 36.4, 103.8 (2C), 119.8, 119.9, 120.2, 120.3, 123.1, 125.1, 126.9 (2 C), 128.0 (2 C), 131.2, 131.9, 132.0, 132.1, 132.2, 142.8, 150.9, 152.8, 164.9 (2 C), 165.0 (2 C). HRMS (–ESI); m/z [M – H] Calcd for C26H18O6: 425.1025; found: 425.1026.
    • 26a Kidwai M. Bansal V. Mothsra P. Saxena S. Somvanshi RK. Dey S. Singh TP. J. Mol. Catal. A: Chem. 2007; 268; 76
    • 26b Dholariya HR. Patel KS. Patel JC. Patel KD. Spectrochim. Acta, Part A 2013; 108: 319