Synthesis 2017; 49(21): 4845-4852
DOI: 10.1055/s-0036-1589072
paper
© Georg Thieme Verlag Stuttgart · New York

On-Water Silver(I)-Catalyzed Cycloisomerization of Acetylenic Free Amines/Amides towards 7-Azaindole/Indole/Isoquinolone Derivatives

Hongpeng Suna, Li Xiaoa, Wei Lia, b, Qiong Xie*a, b, Liming Shao*a, b
  • aSchool of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, P. R. of China   Email: limingshao@fudan.edu.cn   Email: qxie@fudan.edu.cn
  • bShanghai Center for Drug Discovery & Development, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, P. R. of China
This work was financially supported by the National Basic Research Program of China (973 Program, 2015CB931804) and Science and Technology Commission of Shanghai Municipality (No. 15431900100).
Further Information

Publication History

Received: 19 April 2017

Accepted after revision: 14 June 2017

Publication Date:
25 July 2017 (eFirst)

These authors contributed equally to this work

Abstract

Silver-catalyzed on-water intramolecular cyclization of acetylenic free amines is reported, which affords 7-azaindoles in good to excellent yields. Neither strong base/acid catalysts nor N-substituted substrates are required to achieve this cycloisomerization. Hydrogen bonds between water medium and the substrates play an important role in improving chemical reactivity and regioselectivity. Furthermore, the on-water reaction is extendable to acetylenic amides for isoquinolone synthesis.

Supporting Information

 
  • References

    • 1a Jin Z. Nat. Prod. Rep. 2013; 30: 869
    • 1b Pettit GR. Ducki S. Eastham SA. Melody N. J. Nat. Prod. 2009; 72: 1279
    • 1c Tsai J. Lee JT. Wang W. Zhang J. Cho H. Mamo S. Bremer R. Gillette S. Kong J. Haass NK. Sproesser K. Li L. Smalley KS. M. Fong D. Zhu Y-L. Marimuthu A. Nguyen H. Lam B. Liu J. Cheung I. Rice J. Suzuki Y. Luu C. Settachatgul C. Shellooe R. Cantwell J. Kim S-H. Schlessinger J. Zhang KY. J. West BL. Powell B. Habets G. Zhang C. Ibrahim PN. Hirth P. Artis DR. Herlyn M. Bollag G. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 3041
    • 1d Seefeld MA. Rouse MB. McNulty KC. Sun LH. Wang JZ. Yamashita DS. Luengo JI. Zhang SY. Minthorn EA. Concha NO. Heerding DA. Bioorg. Med. Chem. Lett. 2009; 19: 2244
    • 1e Xia MG. Hou CF. DeMong D. Pollack S. Pan M. Singer M. Matheis M. Murray W. Cavender D. Wachter M. Bioorg. Med. Chem. Lett. 2008; 18: 6468
    • 1f Cappelli A. Pericot Mohr G. Giuliani G. Galeazzi S. Anzini M. Mennuni L. Ferrari F. Makovec F. Kleinrath EM. Langer T. Valoti M. Giorgi G. Vomero S. J. Med. Chem. 2006; 49: 6451
    • 1g Nagarajan M. Morrell A. Ioanoviciu A. Antony S. Kohlhagen G. Agama K. Hollingshead M. Pommier Y. Cushman M. J. Med. Chem. 2006; 49: 6283
    • 1h Nagarajan M. Morrell A. Antony S. Kohlhagen G. Agama K. Pommier Y. Ragazzon PA. Garbett NC. Chaires JB. Hollingshead M. Cushman M. J. Med. Chem. 2006; 49: 5129
    • 2a Rupert KC. Henry JR. Dodd JH. Wadsworth SA. Cavender DE. Olini GC. Fahmy B. Siekierka JJ. Bioorg. Med. Chem. Lett. 2003; 13: 347
    • 2b Pettit GR. Meng Y. Herald DL. Graham KA. Pettit RK. Doubek DL. J. Nat. Prod. 2003; 66: 1065
    • 2c Hu X. Compton JR. Abdulhameed MD. Marchand CL. Robertson KL. Leary DH. Jadhav A. Hershfield JR. Wallqvist A. Friedlander AM. Legler PM. J. Med. Chem. 2013; 56: 5275
    • 2d Grant ER. Errico MA. Emanuel SL. Benjamin D. McMillian MK. Wadsworth SA. Zivin RA. Zhong Z. Biochem. Pharmacol. 2001; 62: 283
    • 2e Khadka DB. Woo H. Yang SH. Zhao C. Jin Y. Le TN. Kwon Y. Cho WJ. Eur. J. Med. Chem. 2015; 92: 583
    • 2f Cho WJ. Kim EK. Park IY. Jeong EY. Kim TS. Le TN. Kim DD. Lee ES. Bioorg. Med. Chem. 2002; 10: 2953
    • 3a Leboho TC. Giri S. Popova I. Cock I. Michael JP. de Koning CB. Bioorg.Med.Chem. 2015; 23: 4943
    • 3b Koradin C. Dohle W. Rodriguez AL. Schmid B. Knochel P. Tetrahedron 2003; 59: 1571
    • 3c De Mattos MC. Alatorre-Santamaria S. Gotor-Fernandez V. Gotor V. Synthesis 2007; 2149
    • 3d Cacchi S. Fabrizi G. Parisi LM. J. Comb. Chem. 2005; 7: 510
    • 3e Leboho TC. van Vuuren SF. Michael JP. de Koning CB. Org. Biomol. Chem. 2014; 12: 307
    • 3f Nakamura I. Yamamoto Y. Chem. Rev. 2004; 104: 2127
    • 3g Alonso F. Beletskaya IP. Yus M. Chem. Rev. 2004; 104: 3079
    • 3h Cacchi S. Fabrizi G. Chem. Rev. 2005; 105: 2873
    • 3i Carpita A. Ribecai A. Tetrahedron Lett. 2009; 50: 6877
    • 3j Popowycz F. Routier S. Joseph B. Merour JY. Tetrahedron 2007; 63: 1031
    • 3k Zeni G. Larock RC. Chem. Rev. 2004; 104: 2285
    • 3l Battistuzzi G. Cacchi S. Fabrizi G. Eur. J. Org.Chem. 2002; 2671
    • 3m Kusama H. Takaya J. Iwasawa N. J. Am. Chem. Soc. 2002; 124: 11592
    • 3n Arcadi A. Bianchi G. Marinelli F. Synthesis 2004; 610
    • 3o Kamijo S. Sasaki Y. Yamamoto Y. Tetrahedron Lett. 2004; 45: 35
    • 3p Majumdar KC. Ponra S. Hazra S. Roy B. Synthesis 2011; 1489
    • 3q Hiroya K. Itoh S. Sakamoto T. Tetrahedron 2005; 61: 10958
    • 3r Ye DJ. Wang JF. Zhang X. Zhou Y. Ding X. Feng EG. Sun HF. Liu GN. Jiang HL. Liu H. Green Chem. 2009; 11: 1201
    • 3s Cano R. Yus M. Ramon DJ. Tetrahedron 2012; 68: 1393
    • 3t Carpita A. Ribecai A. Stabile P. Tetrahedron 2010; 66: 7169
    • 3u Hiroya K. Itoh S. Sakamoto T. J. Org. Chem. 2004; 69: 1126
    • 3v Sakai H. Tsutsumi K. Morimoto T. Kakiuchi K. Adv. Synth. Catal. 2008; 350: 2498
    • 3w Majumdar KC. Hazra S. Roy B. Tetrahedron Lett. 2011; 52: 6697
    • 4a Rodriguez AL. Koradin C. Dohle W. Knochel P. Angew. Chem. Int. Ed. 2000; 39: 2488
    • 4b Majumdar KC. Samanta S. Chattopadhyay B. Tetrahedron Lett. 2008; 49: 7213
    • 4c Hudson R. Bizier NP. Esdale KN. Katz JL. Org. Biomol. Chem. 2015; 13: 2273
    • 5a Narayan S. Muldoon J. Finn MG. Fokin VV. Kolb HC. Sharpless KB. Angew. Chem. Int. Ed. 2005; 44: 3275
    • 5b Klijn JE. Engberts JB. F. N. Nature 2005; 435: 746
    • 5c Jung YS. Marcus RA. J. Am. Chem. Soc. 2007; 129: 5492
    • 5d Butler RN. Coyne AG. Chem. Rev. 2010; 110: 6302
    • 5e Banerjee S. Santra S. Tetrahedron Lett. 2009; 50: 2037
    • 5f Banerjee S. New J. Chem. 2015; 39: 5350
    • 5g Xiao J. Wen H. Wang L. Xu LB. Hao ZH. Shao CL. Wang CY. Green Chem. 2016; 18: 1032
    • 5h Nagaraju S. Satyanarayana N. Paplal B. Vasu AK. Kanvah S. Kashinath D. RSC Adv. 2015; 5: 81768
    • 5i Wadhwa P. Kaur T. Singh N. Singh UP. Sharma A. Asian J. Org. Chem. 2016; 5: 120
  • 6 Li LS. Rader C. Matsushita M. Das S. Barbas CF. Lerner RA. Sinha SC. J. Med. Chem. 2004; 47: 5630
  • 7 Uchiyama M. Ozawa H. Takuma K. Matsumoto Y. Yonehara M. Hiroya K. Sakamoto T. Org. Lett. 2006; 8: 5517
    • 8a Sashida H. Kawamukai A. Synthesis 1999; 1145
    • 8b Sun CY. Xu B. J. Org. Chem. 2008; 73: 7361
    • 8c Sakai N. Annaka K. Fujita A. Sato A. Konakahara T. J. Org. Chem. 2008; 73: 4160
    • 8d Kundu NG. Khan MW. Tetrahedron 2000; 56: 4777
    • 8e Mehta S. Waldo JP. Larock RC. J. Org. Chem. 2009; 74: 1141
    • 8f Chary RG. Dhananjaya G. Prasad KV. Vaishaly S. Ganesh YS. S. Dulla B. Kumar KS. Pal M. Chem. Commun. 2014; 50: 6797
    • 8g Hao XQ. Du C. Zhu X. Li PX. Zhang JH. Niu JL. Song MP. Org. Lett. 2016; 18: 3610
    • 8h Le Bras G. Hamze A. Messaoudi S. Provot O. Le Calvez PB. Brion JD. Alami M. Synthesis 2008; 1607
    • 8i Yao TL. Larock RC. J. Org. Chem. 2005; 70: 1432