Synlett 2017; 28(17): 2253-2261
DOI: 10.1055/s-0036-1589074
letter
© Georg Thieme Verlag Stuttgart · New York

Desymmetrization of Symmetrical Triarylcarbinols: Synthesis of 7-Arylfluorenes and a C 2-Symmetric Chiral BIFOL Phosphoric Acid

Nagamalla Someshwar, Muthupandi Karthick, Chinnasamy Ramaraj Ramanathan*
We thank CSIR, New Delhi, and DST, New Delhi, India for financial support. This work has been supported by the Science and Engineering Research Board [Grant Number SR/S1/OC-04/2011(G)] and Council of Scientific and Industrial Research [Grant Number 02(0027)/11/EMR-II]. N.S. thanks the Council of Scientific and Industrial Research, New Delhi, for an SRF. M.K. thanks Pondicherry University for a fellowship.
Further Information

Publication History

Received: 27 April 2017

Accepted after revision: 20 June 2017

Publication Date:
19 July 2017 (eFirst)

Dedicated to Prof. Takahiko Akiyama for his contribution in chiral phosphoric acid organocatalysis

Abstract

A simple and an efficient method for the synthesis of 7-arylfluorenes by intramolecular cyclization of the corresponding triarylcarbinols in the presence of the solid-acid catalyst NaHSO4/SiO2 has been developed. By using this method, a new chiral diol with a C 2-symmetric bisfluorenyl unit, 7,7′-diphenyl-7H,7′H-5,5′-bibenzo[c]fluorene-6,6′-diol (BIFOL), having central chirality was synthesized in an optically active form from (S)-(–)-BINOL-3,3′-dicarboxylic acid. The absolute configuration of the chiral bisfluorene derivative BIFOL was ascertained by single-crystal X-ray analysis. Furthermore, a new chiral phosphoric acid was synthesized from BIFOL and evaluated for enantioselective transfer hydrogenation.

Supporting Information

 
  • References

  • 1 Noyori R. Asymmetric Catalysis in Organic Synthesis . Wiley; New York; 1994
    • 2a Akiyama T. Chem. Rev. 2007; 107: 5744
    • 2b Tereda M. Chem. Commun. 2008; 4097
    • 2c Čorić I. List B. Nature 2012; 483: 315
  • 3 Teichert JF. Feringa BL. Angew. Chem. Int. Ed. 2010; 49: 2486
  • 4 Okano K. Tetrahedron 2011; 67: 2483
  • 5 Seebach D. Beck AK. Heckel A. Angew. Chem. Int. Ed. 2001; 40: 92
    • 6a Hua Z. Vassar VC. Ojima I. Org. Lett. 2003; 5: 3831
    • 6b Shi C. Chien CW. Ojima I. Chem. Asian J. 2011; 6: 674
    • 7a Pu L. Chem. Rev. 1998; 98: 2405
    • 7b Pu L. Yu B.-H. Chem. Rev. 2001; 101: 757
    • 8a Chen X.-H. Xu X.-Y. Liu H. Cun L.-F. Gong L.-Z. J. Am. Chem. Soc. 2006; 128: 14802
    • 8b Li X. Jia X. Lu G. Au-Yeung TT.-L. Lam K.-H. Lo TW. H. Chan AS. C. Tetrahedron: Asymmetry 2003; 14: 2687
    • 9a Desai AA. Wulff WD. Synthesis 2010; 3670
    • 9b Bao J. Wulff WD. Rheingold AL. J. Am. Chem. Soc. 1993; 115: 3814
    • 10a Akiyama T. Saitoh Y. Morita H. Fuchibe K. Adv. Synth. Catal. 2005; 347: 1523
    • 10b Voituriez A. Charette AB. Adv. Synth. Catal. 2006; 348: 2363
    • 10c Lam HW. Synthesis 2011; 2011
    • 10d Teller H. Corbet M. Mantilli L. Gopakumar G. Goddard R. Thiel W. Fürstner A. J. Am. Chem. Soc. 2012; 134: 15331
    • 11a Liu Y. Ding K. J. Am. Chem. Soc. 2005; 127: 10488
    • 11b Dong K. Wang Z. Ding K. J. Am. Chem. Soc. 2012; 134: 12474
    • 11c Stemper J. Isaac K. Duret V. Retailleau P. Voituriez A. Betzer J.-F. Marinetti A. Chem. Commun. 2013; 49: 6084
    • 11d Gnanamani E. Someshwar N. Ramanathan CR. Adv. Synth. Catal. 2014; 356: 2219
  • 12 Vougioukalakis GC. Roubelakis MM. Orfanopoulos M. J. Org. Chem. 2010; 75: 4124
  • 13 Chandrasekhar V. Narayanan RS. Thilagar P. Organometallics 2009; 28: 5883
  • 14 Mahindaratne MP. D. Wimalasena K. J. Org. Chem. 1998; 63: 2858
  • 15 Wang J. Wan W. Jiang H. Gao Y. Jiang X. Lin H. Zhao W. Hao J. Org. Lett. 2010; 12: 3874
  • 16 Khenkin AM. Neumann R. J. Am. Chem. Soc. 2002; 124: 4198
    • 17a Li G. Wang E. Chen H. Li H. Liu Y. Wang PG. Tetrahedron 2008; 64: 9033
    • 17b Wu Y. Zhang J. Bo Z. Org. Lett. 2007; 9: 4435
    • 17c Xia C. Advincula RC. Macromolecules 2001; 34: 6922
    • 17d Xie L. Fu T. Hou X. Tang C. Hua Y. Wang RJ. Fan Q. Peng B. Wei W. Huang W. Tetrahedron Lett. 2006; 47: 6421
    • 17e Wong K.-T. Chi L.-C. Huang S.-C. Liao Y.-L. Liu Y.-H. Wang Y. Org. Lett. 2006; 8: 5029
  • 18 Chen J.-J. Onogi S. Hsieh Y.-C. Hsia C.-C. Higashibayashi S. Sakurai H. Wu Y.-T. Adv. Synth. Catal. 2012; 354: 1551
    • 19a Li Q. Xu W. Hu J. Chen X. Zhang F. Zheng H. RSC Adv. 2014; 4: 27722
    • 19b Teng M.-y. Liu Y. Li S.-l. Huang G. Jiang J. Wang L. RSC Adv. 2013; 3: 9016
  • 20 Sato Y. Aoyama T. Tokido T. Kodomari M. Tetrahedron 2012; 68: 7077
  • 21 Arylfluorenes 19ag; General Procedure A mixture of the appropriate (3-methoxy-2-naphthyl)(diaryl)methanol 13ag (0.5 mmol) and NaHSO4/SiO2 (250 mg) in dry DCE (10 mL) was heated at 90 °C with vigorous stirring for 24 hours under N2. The mixture was then cooled to r.t., filtered, and concentrated under reduced pressure. The residue was purified by column chromatography [silica gel, hexane–EtOAc (99:1)] to give the arylfluorene 19ag in pure form. 6-Methoxy-7-phenyl-7H-benzo[c]fluorene (19a) White solid; yield: 114 mg (71%); mp 168–170 °C. IR (KBr): 2922, 2846, 1592, 1559, 1457, 824, 735, 695 cm–1. 1H NMR (400 MHz, CDCl3): δ = 8.67 (d, J = 8.0 Hz, 1 H), 8.30 (d, J = 8.0 Hz, 1 H), 7.79–7.77 (m, 1 H), 7.46–7.35 (m, 3 H), 7.29–7.27 (m, 1 H), 7.21–7.17 (m, 2 H), 7.14–7.09 (m, 2 H), 7.04–6.98 (m, 3 H), 5.09 (s, 1 H), 3.70 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 155.0, 150.0, 141.7, 141.0, 137.9, 137.8, 136.0, 129.7, 128.4, 128.3, 128.1, 128.0, 127.3, 126.8, 126.5, 125.9, 125.4, 125.3, 124.4, 124.0, 123.1, 106.0, 55.5, 53.0. HRMS-ESI: m/z [M + H]+ calcd for C24H19O: 323.1436; found: 323.1425.
  • 22 CCDC No. 1537731 and 1537733 contain the supplementary crystallographic data for compounds 19f and 12a. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 23a Someshwar N. Ramanathan CR. Tetrahedron: Asymmetry 2015; 26: 1209
    • 23b Ramanathan CR. Someshwar NA. IN 2418/del/2014, 2014
    • 24a Belokon YuN. Maleev VI. Moskalenko MA. Samoilichenko YuV. Peregudov AS. Tsaloev AT. Russ. Chem. Bull. 2013; 62: 1371
    • 24b Li X. Hewgley JB. Mulrooney CA. Yang J. Kozlowski MC. J. Org. Chem. 2003; 68: 5500
  • 25 (2R)-2-Phenyl-1,2,3,4-tetrahydroquinoline (25); Typical Procedure The quinoline 23 (25.6 mg, 0.125 mmol), catalyst (+)-22 (15.3 mg, 0.025 mmol, 20 mol%), Hantzsch dihydropyridine 24 (76 mg, 0.3 mmol), and toluene (3 mL) were added under N2 to test tube equipped with a side arm. The resulting yellow solution was stirred at r.t. for 24 h. The solvent was evaporated in vacuo, and the residue was purified by column chromatography (silica gel) to give a colorless oil; yield: 23 mg (88%; 22% ee); IR (neat): 3403, 2922, 1605, 1487, 1112, 749 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.58–7.44 (m, 5 H), 7.22–7.18 (m, 2 H), 6.85 (td, J = 7.6, 1.2 Hz, 1 H), 6.68 (d, J = 7.6 Hz, 1 H), 4.58 (dd, J = 9.2, 3.2 Hz, 1 H), 4.14 (s, 1 H), 3.13–3.05 (m, 1 H), 2.93–2.87 (m, 1 H), 2.32–2.25 (m, 1 H), 2.21–2.17 (m, 1 H). 13C NMR (100 MHz, CDCl3) δ = 144.85, 144.72, 129.29, 128.56, 127.41, 126.90, 126.56, 120.81, 117.14, 114.00, 56.18, 30.97, 26.34. Chiral HPLC: (Chiralcel OD-H (4.6 × 250 mm); Mobile phase: hexanes–i-PrOH), flow rate: 0.6 mL/min, λ = 254 nm: t R(S) = 20.13 min, t R(R) = 27.16 min.
  • 26 Guo Q.-S. Du D.-M. Xu J. Angew. Chem. Int. Ed. 2008; 47: 759