Synlett 2017; 28(19): 2619-2623
DOI: 10.1055/s-0036-1589082
letter
© Georg Thieme Verlag Stuttgart · New York

Catalyst-Free Oxidative [3+2] Cycloaddition of Phenols and Styrenes in the Presence of a 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone/1,1,1,3,3,3-hexafluoropropan-2-ol System

Yunxia Wang*, Na Cui, Yu Zhao
  • College of Chemistry & Material Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education of China, Northwest University, Xi’an 710127, P. R. of China   Email: wyx27210@nwu.edu.cn
We are grateful for financial support from the Open Foundation of Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education of China, Science and Technology Program of Xi'an City and Shaanxi Province (2017KW-066).
Further Information

Publication History

Received: 06 May 2017

Accepted after revision: 03 July 2017

Publication Date:
03 August 2017 (eFirst)

Abstract

A catalyst-free oxidative [3+2] cycloaddition of phenols and styrenes was developed with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone as the oxidant and 1,1,1,3,3,3-hexafluoropropan-2-ol as the solvent at room temperature. With this method, a broad range of dihydrobenzofurans were efficiently and quickly obtained from readily available phenols and styrenes.

Supporting Information

 
  • References and Notes

  • 1 Kshirsagar UA. Regev C. Parnes R. Pappo D. Org. Lett. 2013; 15: 3174
  • 2 Varadaraju TG. Hwu JR. Org. Biomol. Chem. 2012; 10: 5456
  • 3 Blum TR. Zhu Y. Nordeen SA. Yoon TP. Angew. Chem. Int. Ed. 2014; 53: 11056
  • 4 Magoulas GE. Papaioannou D. Molecules 2014; 19: 19769
  • 5 Cui N. Zhao Y. Wang Y. Chin. J. Org. Chem. 2017; 37: 20
    • 6a Wang S. Gates BD. Swenton JS. J. Org. Chem. 1991; 56: 1979
    • 6b Dohi T. Nakae T. Toyoda Y. Koseki D. Kubo H. Kamitanaka T. Kita Y. Heterocycles 2015; 90: 631
    • 6c Mohr AL. Lombardo VM. Arisco TM. Morrow GW. Synth. Commun. 2009; 39: 3845
  • 7 Alvey L. Prado S. Huteau V. Saint-Joanis B. Michel S. Koch M. Cole ST. Tillequin F. Janin YL. Bioorg. Med. Chem. 2008; 16: 8264
    • 8a Chen P.-Y. Wu Y.-H. Hsu M.-H. Wang T.-P. Wang E.-C. Tetrahedron 2013; 69: 653
    • 8b Sako M. Hosokawa H. Ito T. Iinuma M. J. Org. Chem. 2004; 69: 2598
    • 8c Takaya Y. Terashima K. Ito J. He YH. Tateoka M. Yamaguchi N. Niwa M. Tetrahedron 2005; 61: 10285
    • 8d Bruschi M. Orlandi M. Rindone B. Rummakko P. Zoia L. J. Phys. Org. Chem. 2006; 19: 592
    • 8e Wang G.-W. Wang H.-L. Capretto DA. Han Q. Hua R.-B. Yang S.-D. Tetrahedron 2012; 68: 5216
    • 8f Althagafy HS. Meza-Aviña ME. Oberlies NH. Croatt MP. J. Org. Chem. 2013; 78: 7594
    • 9a El-Seedi HR. Yamamura S. Nishiyama S. Tetrahedron 2002; 58: 7485
    • 9b Kirste A. Schnakenburg G. Stecker F. Fischer A. Waldvogel SR. Angew. Chem. Int. Ed. 2010; 49: 971
    • 9c El-Seedi HR. Yamamura S. Nishiyama S. Tetrahedron Lett. 2002; 43: 3301
    • 9d Okada Y. Yoshioka T. Koike M. Chiba K. Tetrahedron Lett. 2011; 52: 4690
    • 9e Chiba K. Fukuda M. Kim S. Kitano Y. Tada M. J. Org. Chem. 1999; 64: 7654
    • 9f Kim S. Noda S. Hayashi K. Chiba K. Org. Lett. 2008; 10: 1827
  • 10 Zhao Y. Huang B. Yang C. Li B. Xia W. Synthesis 2015; 47: 2731
  • 11 Huang Z. Jin L. Feng Y. Peng P. Yi H. Lei A. Angew. Chem. Int. Ed. 2013; 52: 7151
  • 12 Liang K. Yang J. Tong X. Shang W. Pan Z. Xia C. Org. Lett. 2016; 18: 1474
  • 13 Liang K. Wu T. Xia C. Org. Biomol. Chem. 2016; 14: 4690
  • 14 Meng L. Zhang G. Liu C. Wu K. Lei A. Angew. Chem. Int. Ed. 2013; 52: 10195
  • 15 Shama S. Parumala SK. R. Peddinti RK. Synlett 2017; 28: 239
  • 16 Song T. Zhou B. Peng G.-W. Zhang Q.-B. Wu L.-Z. Liu Q. Wang Y. Chem. Eur. J. 2014; 20: 678
    • 17a Gaster E. Vainer Y. Regev A. Narute S. Sudheendran K. Werbeloff A. Shalit H. Pappo D. Angew. Chem. Int. Ed. 2015; ó54: 4198
    • 17b Elsler B. Wiebe A. Schollmeyer D. Dyballa KM. Franke R. Waldvogel SR. Chem. Eur. J. 2015; 21: 12321
    • 17c Dohi T. Yamaoka N. Kita Y. Tetrahedron 2010; 66: 5775
    • 17d Libman A. Shalit H. Vainer Y. Narute S. Kozuch S. Pappo D. J. Am. Chem. Soc. 2015; 137: 11453
  • 18 Dihydrobenzofurans 3aq; Typical Procedure A 5 mL cylindrical glass bottle equipped with magnetic stirrer bar was charged with the appropriate phenol 1 (0.15 mmol), styrene 2 (0.3 mmol), and HFIP (1.5 mL). When the phenol and the styrene were completely dissolved in the HFIP, DDQ (1.2 equiv) was gradually added. The mixture was stirred at r.t. for 15 min, and then concentrated under vacuum. The crude product was purified by flash chromatography [silica gel, PE–EtOAc (50:1)]. 5-Methoxy-2-phenyl-2,3-dihydro-1-benzofuran (3a) Yellow oil; yield: 30 mg (88%). 1H NMR (400 MHz, CDCl3): δ = 7.46–7.30 (m, 5 H), 6.83–6.76 (m, 2 H), 6.72 (dd, J = 8.7, 2.6 Hz, 1 H), 5.75 (t, J = 8.8 Hz, 1 H), 3.78 (s, 3 H), 3.61 (dd, J = 15.7, 9.3 Hz, 1 H), 3.21 (dd, J = 15.7, 8.2 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 154.3, 153.78, 142.0, 128.7, 128.0, 127.5, 125.8, 113.0, 111.2, 109.2, 84.2, 56.1, 38.9. HRMS (ESI+): m/z [M + Na]+ calcd for C15H14NaO2: 249.0886; found: 249.0888. 2-(4-tert-Butylphenyl)-5-methoxy-2,3-dihydro-1-benzofuran (3f) Pale-yellow solid; yield: 38 mg (89%). 1H NMR (400 MHz, CDCl3): δ = 7.39 (d, J = 8.3 Hz, 2 H), 7.34 (d, J = 8.3 Hz, 2 H), 6.83–6.72 (m, 2 H), 6.69 (dd, J = 8.6, 2.2 Hz, 1 H), 5.71 (t, J = 8.7 Hz, 1 H), 3.76 (s, 3 H), 3.57 (dd, J = 15.7, 9.3 Hz, 1 H), 3.22 (dd, J = 15.7, 8.2 Hz, 1 H), 1.31 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 154.2, 153.8, 151.0, 138.8, 127.7, 125.7, 125.5, 112.9, 111.2, 109.2, 84.2, 56.0, 38.6, 34.6, 31.3. HRMS (ESI+): m/z [M + Na]+ calcd for C19H22NaO2: 305.1512; found: 305.1512. 2-Mesityl-5-methoxy-2,3-dihydro-1-benzofuran (3g) colorless oil; yield: 28 mg (69%). 1H NMR (400 MHz, CDCl3): δ = 6.86 (s, 2 H), 6.80 (s, 1 H), 6.73 (d, J = 8.7 Hz, 2 H), 6.11 (t, J = 10.4 Hz, 1 H), 3.78 (s, 3 H), 3.43 (dd, J = 15.9, 9.9 Hz, 1 H), 3.25 (dd, J = 15.9, 11.0 Hz, 1 H), 2.29 (d, J = 14.9 Hz, 9 H). 13C NMR (100 MHz, CDCl3): δ = 154.1, 153.7, 137.4, 136.7, 133.4, 130.0, 128.0, 113.2, 110.9, 109.4, 81.6, 56.0, 36.4, 20.8, 20.4. HRMS (ESI+): m/z [M + Na]+ calcd for C18H20NaO2: 291.1356; found: 291.1350. 8-Methoxy-5,6,6a,11a-tetrahydrobenzo[b]naphtho[2,1-d]furan (3n) Yellow oil; yield: 26 mg (68%). 1H NMR (400 MHz, CDCl3): δ = 7.61 (d,J = 7.1 Hz, 1 H), 7.40–7.29 (m, 2 H), 7.22 (d,J = 7.1 Hz, 1 H), 6.92 (d, J = 1.8 Hz, 1 H), 6.80–6.71 (m, 2 H), 5.72 (d, J = 8.4 Hz, 1 H), 3.85 (s, 3 H), 3.71 (q, J = 8.0 Hz, 1 H), 2.86–2.66 (m, 2 H), 2.18–2.07 (m, 1 H), 1.94–1.82 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 154.3, 153.5, 138.8, 133.6, 132.5, 130.2, 128.5, 128.3, 126.7, 112.9, 110.8, 109.5, 82.1, 56.1, 41.7, 27.9, 27.7. HRMS (ESI+): m/z [M + Na]+ calcd for C17H16NaO2: 275.1043; found: 275.1044. 5-Ethoxy-2-methyl-2-phenyl-2,3-dihydro-1-benzofuran (3o) White solid; yield: 33 mg (90%); mp 58–59 °C. 1H NMR (400 MHz, CDCl3): δ = 7.50–7.43 (m, 2 H), 7.33 (t, J = 7.6 Hz, 2 H), 7.22 (dd, J = 4.9, 2.2 Hz, 1 H), 6.77 (d, J = 8.5 Hz, 1 H), 6.74–6.65 (m, 2 H), 3.93 (q, J = 7.0 Hz, 2 H), 3.36 (q, J = 15.5 Hz, 2 H), 1.75 (s, 3 H), 1.36 (t, J = 7.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 153.4, 153.0, 146.9, 128.3, 127.4, 127.0, 124.5, 113.9, 112.1, 109.4, 89.1, 64.3, 45.2, 29.2, 15.0. HRMS (ESI+): m/z [M + Na]+ calcd for C17H18NaO2: 277.1199; found: 277.1199.