Synlett 2017; 28(17): 2315-2319
DOI: 10.1055/s-0036-1589089
letter
© Georg Thieme Verlag Stuttgart · New York

Selective Oxidation of Secondary Amines to N,N-Disubstituted Hydroxylamines by Choline Peroxydisulfate

Alireza Banan
Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz, Iran
,
Hassan Valizadeh
Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz, Iran
,
Akbar Heydari*
Department of Chemistry, Tarbiat Modares University, 14155-4838 Tehran, Iran   Email: heydar_a@modares.ac.ir
,
Abolghasem Moghimi
Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, 191367-4711, Tehran, Iran
› Author Affiliations
Partial financial assistance from the Research Vice Chancellor of Azarbaijan Shahid Madani University is gratefully acknowledged
Further Information

Publication History

Received: 21 April 2017

Accepted after revision: 28 June 2017

Publication Date:
17 August 2017 (eFirst)

Abstract

N,N-Disubstituted hydroxylamines were prepared directly from secondary amines by a reliable method using an oxidizing task-specific ionic liquid, choline peroxydisulfate. The operational simplicity, high selectivity, and green reaction conditions, make this method efficient and practical.

Supporting Information

 
  • References and Notes

  • 1 Heydari A. Aslanzadeh S. Adv. Synth. Catal. 2005; 347: 1223
  • 2 Altenburger JM. Mioskowski C. d’Orchymont H. Schirlin D. Schalk C. Tarnus C. Tetrahedron Lett. 1992; 33: 5055
  • 3 Frazier CP. Bugarin A. Engelking JR. Read de Alaniz J. Org. Lett. 2012; 14: 3620
  • 4 Canham SM. France DJ. Overman LE. J. Org. Chem. 2012; 78: 9
  • 5 Romeo R. Carnovale C. Giofrè SV. Romeo G. Macchi B. Frezza C. Marino-Merlo F. Pistarà V. Chiacchio U. Bioorg. Med. Chem. 2012; 20: 3652
  • 6 Thibodeaux CJ. Melançon III CE. Liu H.-w. Angew. Chem. Int. Ed. 2008; 47: 9814
  • 7 Wencewicz TA. Yang B. Rudloff JR. Oliver AG. Miller MJ. J. Med. Chem. 2011; 54: 6843
  • 8 Abuskhuna S. McCann M. Briody J. Devereux M. Kavanagh K. Kayal N. McKee V. Polyhedron 2007; 26: 4573
  • 9 Ludovici DW. Kavash RW. Kukla MJ. Ho CY. Ye H. De Corte BL. Andries K. de Béthune M.-P. Azijn H. Pauwels R. Moereels HE. L. Heeres J. Koymans LM. H. de Jonge MR. Van Aken KJ. A. Daeyaert FF. D. Lewi PJ. Das K. Arnold E. Janssen PA. J. Bioorg. Med. Chem. Lett. 2001; 11: 2229
  • 10 Augustyns K. Van der Veken P. Senten K. Haemers A. Expert Opin. Ther. Pat. 2003; 13: 499
  • 11 Judd TC. Williams RM. Angew. Chem. 2011; 114: 4877
  • 12 Kálai T. Petrlova J. Balog M. Aung HH. Voss JC. Hideg K. Eur. J. Med. Chem. 2011; 46: 1348
  • 13 Reis A. Domingues MR. Amado FM. Manuel Oliveira M. Domingues P. Free Radical Res. 2008; 42: 481
  • 14 Melman A. In The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids . Rappoport Z. Liebman JF. Wiley; Chichester: 2008. Chap. 5 117
  • 15 Murray RW. Singh M. Synth. Commun. 1989; 19: 3509
  • 16 Zonta C. Cazzola E. Mba M. Licini G. Adv. Synth. Catal. 2008; 350: 2503
  • 17 Henry RA. Dehn WM. J. Am. Chem. Soc. 1950; 72: 2280
  • 18 Goti A. Nannelli L. Tetrahedron Lett. 1996; 37: 6025
  • 19 Dhanju S. Crich D. Org. Lett. 2016; 18: 1820
  • 20 Choudary BM. Reddy CV. Prakash BV. Bharathi B. Kantam ML. J. Mol. Catal. A: Chem. 2004; 217: 81
  • 21 Fields JD. Kropp PJ. J. Org. Chem. 2000; 65: 5937
  • 22 Gella C. Ferrer È. Alibés R. Busqué F. de March P. Figueredo M. Font J. J. Org. Chem. 2009; 74: 6365
  • 23 Muzart J. Adv. Synth. Catal. 2006; 348: 275
  • 24 Lee S.-g. Chem. Commun. 2006; 1049
  • 25 Luo S. Mi X. Zhang L. Liu S. Xu H. Cheng J.-P. Tetrahedron 2007; 63: 1923
  • 26 Wang L. Li H. Li P. Tetrahedron 2009; 65: 364
  • 27 Armstrong DW. Zhang L.-K. He L. Gross ML. Anal. Chem. 2001; 73: 3679
  • 28 Cui G. Wang C. Zheng J. Guo Y. Luo X. Li H. Chem. Commun. 2012; 48: 2633
  • 29 Couto RM. Lourenço C. Simões PC. Branco LC. New J. Chem. 2014; 38: 5559
  • 30 Smiglak M. Pringle JM. Lu X. Han L. Zhang S. Gao H. MacFarlane DR. Rogers RD. Chem. Commun. 2014; 50: 9228
  • 31 Gadilohar BL. Kumbhar HS. Shankarling GS. Ind. Eng. Chem. Res. 2014; 53: 19010
  • 32 Kumar KM. Synlett 2012; 23: 2572-2573
  • 33 Revuelta J. Cicchi S. Goti A. Brandi A. Synthesis 2007; 485
  • 34 Bartoli G. Marcantoni E. Petrini M. J. Chem. Soc., Chem. Commun. 1993; 1373
  • 35 O’Neil IA. Cleator E. Tapolczay DJ. Tetrahedron Lett. 2001; 42: 8247
  • 36 Choline Peroxydisulfate Hydrate A mixture of choline chloride (27 g, 193 mmol) and K2S2O8 powder (30 g, 110 mmol) in acetone (100 mL) was stirred at 30 °C for 24 h and then filtered to remove the solid KCl. The filtrate was concentrated under reduced pressure to give a pale-yellow oily product; yield: 36.5 g (90%). The choline peroxydisulfate hydrate was stored at 0–5 °C.
  • 37 N,N-Disubstituted Hydroxylamines 1a–m; General Procedure A round-bottomed flask was charged with the secondary amine (5 mmol) and ChPS (5.5 mmol) and the mixture was stirred for 1 h at 60 °C under N2. The mixture was then dissolved in H2O (5 mL) and the product was extracted with CH2Cl2 or EtOAc (3 × 5 mL). The combined organic layers were dried (Na2SO4), filtered, and concentrated under reduced pressure.
  • 38 Zajac WW. Jr. Walters TR. Darcy MG. J. Org. Chem. 1988; 53: 5856
  • 39 Roffia P. Tonti S. Cesana A. Mantegazza MA. Padovan M. US 4918194, 1990
  • 40 Laus G. Kahlenberg V. Crystals 2012; 2: 1492
  • 41 Wong A. Kuethe JT. Davies IW. J. Org. Chem. 2003; 68: 9865
  • 42 Watson AA. J. Org. Chem. 1977; 42: 1610
  • 43 Kawasaki T. Kodama A. Nishida T. Shimizu K. Somei M. Heterocycles 1991; 32: 221
  • 44 Cicchi S. Hold I. Brandi A. J. Org. Chem. 1993; 58: 5274
  • 45 Nikbakht F. Heydari A. Saberi D. Azizi K. Tetrahedron Lett. 2013; 54: 6520
  • 46 Hale JR. US 20150159072, 2015
  • 47 Gupte K. Coburn CE. Dhamdhere MS. Sawant M. US 9234052, 2016
  • 48 Butler G. Cyclopolymerization and Cyclocopolymerization. Dekker; New York: 1992
  • 49 Allan GG. Chopra CS. Mattila T. Pestic. Sci. 1972; 3: 153
  • 50 Nicolaou KC. Lee SH. Estrada AA. Zak M. Angew. Chem. 2005; 117: 3802
  • 51 Chittick EJ. Stamper MA. Beasley JF. Lewbart GA. Horne WA. J. Am. Vet. Med. Assoc. 2002; 221: 1019
  • 52 Ketamine and Medetomidine Free Bases Ketamine or medetomidine hydrochloride (5 g) was neutralized with 1 M aq NaHCO3 (25 mL), and the solution was extracted with CH2Cl2 (3 × 20 mL). The combined extracts were dried (Na2SO4) and vacuum filtered. The solvent was removed under reduced pressure to give a pale-yellow powder. The structure was confirmed by melting-point comparison and by 1H NMR spectroscopy.
  • 53 Denney DB. Denney DZ. J. Am. Chem. Soc. 1960; 82: 1389
  • 54 N,N-Dibenzylhydroxylamine (1a) White powder; isolated yield: 970 mg (91%); mp 122–124 °C. 1H NMR (DMSO-d 6): δ = 4.18 (s, 4 H, CH2–), 7.47–7.63 (m, 10 H, C6H5–), 9.93 (br s, 1 H, N-OH). 13C NMR (DMSO-d 6): δ = 50.07 (–CH2–), 129.01 (C-4), 129.29 (C-3), 130.57 (C-2), 132.33 (C-1, C–CH2–N–). N-Benzyl-N-(tert-butyl)hydroxylamine (1b) White powder; isolated yield: 788 mg (88%); mp 70–72 °C. 1H NMR (DMSO-d 6): δ = 1.46 (s, 9 H), 4.13 (s, 2 H), 9.29 (br s, 1 H, N-OH, exchangeable with D2O). 13C NMR (DMSO-d 6): δ = 25.30, 53.39, 56.95, 128.76, 129.94, 130.47, 133.10. N,N-Diethylhydroxylamine (1c) Brown liquid; isolated yield: 418 mg (94%). 1H NMR (CDCl3): δ = 1.43 (t, J = 6.75 Hz, 6 H, CH3), 3.04 (q, J = 6.75 Hz, 4 H, CH2), 9.25 (br s, 1 H, NOH). 13C NMR (CDCl3): δ = 10.80 (CH3), 41.93 (CH2). N,N-Diisobutylhydroxylamine (1d) Light-brown powder; isolated yield: 675 mg (93%); mp 57–59 °C. 1H NMR (CDCl3): δ = 1.10 (d, J = 6.75 Hz, 12 H, CH3), 2.28 (m, 2 H, –CH–), 2.80 (q, 1 J = 12.25 Hz, 2 J = 6.50, 4 H, –CH2–), 9.26 (br s, 1 H, NOH). 13C NMR (CDCl3): δ = 20.72 (CH3), 25.24 (=CH–), 54.92 (–CH2 –). N,N-Diallylhydroxylamine (1e) Brown liquid; isolated yield: 503 mg (89%). 1H NMR (CDCl3): δ = 3.56 (d, J = 6.50 Hz, 4 H, –CH2–N), 5.45 (t, 1 J = 2 J = 9.25 Hz, 4 H, =CH2), 6.03 (m, 2 H, =CH–), 9.76 (br s, 1 H, NOH). 13C NMR (CDCl3): δ = 48.02 (–CH2–), 123.98 (=CH2), 128.75 (–CH=). Morpholin-4-ol (1f) Brown oily liquid; isolated yield: 329 mg (64%). 1H NMR (DMSO-d 6): δ = 3.19 (t, J = 4.75 Hz, 4 H, –CH2–N), 3.66 (t, J = 4.75 Hz, 4 H, –CH2–O), 10.11 (br s, 1 H, NOH). 13C NMR (CDCl3): δ = 58.7 (–CH2–N), 65.9 (–CH2–O).Piperidin-1-ol (1g) Brown solid; isolated yield: 460 mg (91%); mp 32–34 °C. 1H NMR (CDCl3): δ = 1.66 (br s, 2 H, CH2), 1.88 (br s, 4 H, CH2), 3.16 (br s, 4 H, CH2–N), 9.33 (br s, 1 H, NOH). 13C NMR (CDCl3): δ = 22.34, 22.37, 44.37. Pyrrolidin-1-ol (1h) Brown oily liquid; isolated yield: 313 mg (72%). 1H NMR (CDCl3): δ = 2.01 (br s, 4 H, CH2), 3.31 (br s, 4 H, CH2–N), 9.58 (br s, 1 H, NOH). 13C NMR (CDCl3): δ = 24.31 (–CH2–), 44.96 (–CH2–N). 1H-Imidazol-1-ol (1i) Light-yellow liquid; isolated yield: 310 mg (74%). 1H NMR (CDCl3): δ = 7.13 (br s, 2 H, CH–N), 7.27 (br s, 1 H, N–CH–N), 7.76 (br s, 1 H, NOH). 13C NMR (CDCl3): δ = 121.62, 135.02. 1H-Indol-1-ol (1j) Brown oily liquid; isolated yield: 638 mg (96%). 1H NMR (CDCl3): δ = 6.54 (br s, 1 H, CH-3), 7.12 (t, J = 6.75 Hz, 1 H, CH-5), 7.15 (br s, 1 H, CH-2), 7.19 (t, J = 6.75 Hz, 1 H, CH-6), 7.37 (d, J = 7.75 Hz, 1 H, CH-7), 7.65 (d, J = 7.75 Hz, 1 H, CH-4), 8.18 (br s, 1 H, NOH). 13C NMR (CDCl3): δ = 102.4 (C-3), 111.0 (C-7), 119.7 (C-6), 120.7 (C-4), 121.9 (C-5), 124.2 (C-2), 127.7 (C-9) 135.7 (C-8). 6-Amino-9H-purin-9-ol (1k) Plum powder; isolated yield: 664 mg (88%); mp 210–212 °C. 1H NMR (DMSO-d 6): δ = 7.88 (br s, 2 H, NH2), 8.25 (s, 2 H, –CH–) 4.55 (br s, 1 H, –OH). 13C NMR (CDCl3): δ = 112.56 (C-5), 140.96 (C-8), 149.87 (C-4), 150.72 (C-2), 153.80 (C-6). 4-[1-(2,3-Dimethylphenyl)ethyl]-1H-imidazol-1-ol (1l) Yellow solid; isolated yield: 897 mg (83%); mp 188–190 °C. 1H NMR (CDCl3): δ = 1.68 (d, J = 7.00 Hz, 3 H, CH3), 2.22 (s, 3 H, CH3), 2.29 (s, 3 H, CH3), 4.58 (q, J = 7.00 Hz, 1 H, CH), 6.70 (s, 1 H, CH), 7.01–7.08 (m, 3 H), 8.77 (s, 1 H), 14.41 (br s, 1 H, NOH). 13C NMR (CDCl3): δ = 14.9 (CH3), 20.52 (CH3), 20.94 (CH3), 32.18 (CH), 115.14 (CH), 123.91 (CH), 125.89 (CH), 128.94 (CH), 132.90 (quat C), 134.21 (quat C), 137.31 (CH), 138.57 (quat C), 139.49 (quat C). 2-(2-Chlorophenyl)-2-[hydroxy(methyl)amino]cyclohexanone (1m) Light-yellow powder; isolated yield: 1176 mg (91%); mp 206–208 °C. 1H NMR (CDCl3): δ = 1.55–2.00 (m, 6 H), 2.44–2.63 (m, 5 H), 7.46–7.52 (m, 3 H), 8.14 (d, J = 0.75 Hz, 1 H), 9.53 (br s, 1 H, –OH), 10.57 (br s, 1 H, –OH). 13C NMR (CDCl3): δ = 21.60 (CH2), 28.29 (CH2), 29.41 (CH3), 38.26 (CH2), 40.19 (CH2), 72.60 (quat C), 128.50 (CH), 128.67 (CH), 131.76 (CH), 131.89 (CH), 131.96 (quat C), 135.27 (quat C), 205.28 (quat C, C=O).