Synthesis 2017; 49(24): 5396-5412
DOI: 10.1055/s-0036-1589101
paper
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed Cross-Coupling of Functionalized Organo­manganese Reagents with Aryl and Heteroaryl Halides Promoted by 4-Fluorostyrene

Andreas D. Benischkea, Alexandre Desaintjeanb, Thomas Julia, Gérard Cahiezb, Paul Knochel*a
  • aDepartment of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5–13, 81377 München, Germany   Paul.Knochel@cup.uni-muenchen.de
  • bInstitut de Recherche de Chimie Paris, CNRS, Chimie Paris Tech, 11 Rue Pierre et Marie Curie, 75005 Paris, France   Email: gerard.cahiez@chimie-paristech.fr
Further Information

Publication History

Received: 25 July 2017

Accepted after revision: 03 August 2017

Publication Date:
30 August 2017 (eFirst)

Abstract

A catalytic system consisting of Ni(acac)2 (5 mol%) and 4-fluorostyrene (20 mol%) allows a convenient cross-coupling of functionalized organomanganese reagents with a variety of aryl and heteroaryl halides leading to polyfunctionalized diaryl- and arylheteroarylmethane derivatives.

Supporting Information

 
  • References

    • 2a Cahiez G. Masuda A. Bernard D. Normant JF. Tetrahedron Lett. 1976; 36: 3155
    • 2b Friour G. Alexakis A. Cahiez G. Normant JF. Tetrahedron 1984; 40: 683
    • 2c Friour G. Cahiez G. Normant JF. Synthesis 1985; 50
    • 2d Ritter K. Hanack M. Tetrahedron Lett. 1985; 26: 1285
    • 2e Boche G. Eiben R. Tetrahedron Lett. 1985; 26: 1289
  • 3 Quinio P. Benischke AD. Moyeux A. Cahiez G. Knochel P. Synlett 2015; 26: 514
    • 4a Kauffmann T. Bisling M. Tetrahedron Lett. 1984; 25: 293
    • 4b Cahiez G. Alami M. Tetrahedron Lett. 1986; 27: 569
    • 4c Cahiez G. Alami M. Tetrahedron Lett. 1989; 30: 3541
    • 4d Cahiez G. Alami M. J. Organomet. Chem. 1990; 397: 291
    • 4e Namboothiri IN. N. Hassner A. J. Organomet. Chem. 1996; 518: 69
    • 4f Yorimitsu H. Hayashi Y. Tang J. Shinokubo H. Oshima K. Bull. Chem. Soc. Jpn. 1997; 70: 2297
    • 5a Peng Z. Li N. Sun X. Wang F. Xu L. Jiang C. Song L. Yan Z.-F. Org. Biomol. Chem. 2014; 12: 7800
    • 5b Haas D. Hammann JM. Moyeux A. Cahiez G. Knochel P. Synlett 2015; 26: 1515
    • 6a Wunderlich SH. Kienle M. Knochel P. Angew. Chem. Int. Ed. 2009; 121: 7392
    • 6b Peng Z. Knochel P. Org. Lett. 2011; 13: 3198
  • 7 Benischke AD. Breuillac AJ. A. Moyeux A. Cahiez G. Knochel P. Synlett 2016; 27: 471
  • 8 Hofmayer MS. Hammann JM. Haas D. Knochel P. Org. Lett. 2016; 18: 6456

    • For recent examples, see:
    • 9a Cherney AH. Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365
    • 9b Zhu F. Wang Z.-X. J. Org. Chem. 2014; 79: 4285
    • 9c Kadunce NT. Reisman SE. J. Am. Chem. Soc. 2015; 137: 10480
    • 9d Tao J.-L. Wang Z.-X. Eur. J. Org. Chem. 2015; 6534
    • 9e Anka-Lufford LL. Huihui KM. M. Gower NJ. Ackermann LG. Weix DJ. Chem. Eur. J. 2016; 22: 11564
    • 9f Chu CK. Liang Y. Fu GC. J. Am. Chem. Soc. 2016; 138: 6404
    • 9g Tobisu M. Takahira T. Morioka T. Chatani N. J. Am. Chem. Soc. 2016; 138: 6711
    • 9h Huihui KM. M. Shrestha R. Weix D. J. Org. Lett. 2017; 19: 340
    • 9i Choi J. Fu GC. Science 2017; 356: 152
    • 9j Mu X. Shibata Y. Makida Y. Fu GC. Angew. Chem. Int. Ed. 2017; 56: 5821

      For selected reviews, see:
    • 10a Phapale VB. Cardenas DJ. Chem. Soc. Rev. 2009; 38: 1598
    • 10b Rosen BM. Quasdorf KW. Wilson DA. Zhang N. Resmerita A.-M. Garg NK. Percec V. Chem. Rev. 2011; 111: 1346
    • 10c Jana R. Pathak TP. Sigman MS. Chem. Rev. 2011; 111: 1417
    • 10d Tobisu M. Chatani N. Acc. Chem. Res. 2015; 48: 1717
    • 10e Tollefson EJ. Hanna LE. Jarvo ER. Acc. Chem. Res. 2015; 48: 2344
  • 11 Leleu A. Fort Y. Schneider R. Adv. Synth. Catal. 2006; 348: 1086
  • 12 Liu N. Wang Z.-X. Adv. Synth. Catal. 2012; 354: 1641
  • 13 Cahiez G. Laboue B. Tetrahedron Lett. 1989; 30: 7369
  • 14 Krasovskiy A. Knochel P. Synthesis 2006; 890
    • 15a Kuzmina OM. Steib AK. Markiewicz JT. Flubacher D. Knochel P. Angew. Chem. Int. Ed. 2013; 52: 4945
    • 15b Kuzmina OM. Steib AK. Fernandez S. Boudot W. Markiewicz JT. Knochel P. Chem. Eur. J. 2015; 21: 8242
  • 16 Hammann JM. Haas D. Tüllmann C.-P. Karaghiosoff K. Knochel P. Org. Lett. 2016; 18: 4778
    • 17a Giovannini R. Stüdemann T. Dussin G. Knochel P. Angew. Chem. Int. Ed. 1998; 37: 2387
    • 17b Giovannini R. Stüdemann T. Devasagayaraj A. Dussin G. Knochel P. J. Org. Chem. 1999; 64: 3544
    • 17c Piber M. Jensen AE. Rottländer M. Knochel P. Org. Lett. 1999; 1: 1323
    • 17d Jensen AE. Knochel P. J. Org. Chem. 2002; 67: 79
    • 17e Korn TJ. Knochel P. Angew. Chem. Int. Ed. 2005; 44: 2947

      For recent examples, see:
    • 18a Guisan-Ceinos M. Soler-Yanes R. Collado-Sanz D. Phapale VB. Bunuel E. Cardenas DJ. Chem. Eur. J. 2013; 19: 8405
    • 18b Denmark SE. Cresswell AJ. J. Org. Chem. 2013; 78: 12593
    • 18c Hammann JM. Steib AK. Knochel P. Org. Lett. 2014; 16: 6500
    • 18d Hammann JM. Haas D. Knochel P. Angew. Chem. Int. Ed. 2015; 54: 4478
    • 18e Magano J. Monfette S. ACS Catal. 2015; 5: 3120
    • 19a Cahiez G. Alami M. Tetrahedron 1989; 45: 4163
    • 19b Cahiez G. Razafintsalama L. Laboue B. Chau F. Tetrahedron Lett. 1998; 39: 849