Synthesis 2017; 49(24): 5307-5319
DOI: 10.1055/s-0036-1589102
short review
© Georg Thieme Verlag Stuttgart · New York

Electrophilic Ring Opening of Small Heterocycles

Chuan Wang*
Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. of China   Email: chuanw@ustc.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 14 July 2017

Accepted after revision: 01 August 2017

Publication Date:
30 August 2017 (eFirst)

Abstract

Small heterocycles, such as epoxides, aziridines, and ox­etanes are among the most useful building blocks in organic synthesis. Through electrophilic ring opening of these molecules, various electrophilic functional groups can be installed, which cannot be achieved via classic nucleophilic ring-opening reactions. In this review, the developments of electrophilic ring opening of small heterocycles are surveyed and organized according to the types of metal promoters.

1 Introduction

2 Electrophilic Ring Opening of Small Heterocycles Using Stoichiometric Metals

2.1 Lithium-Mediated Electrophilic Ring Opening of Epoxides and Oxetanes

2.2 Chromium-Mediated Electrophilic Ring Opening of Vinyl Epoxides

2.3 Tin-Mediated Electrophilic Ring Opening of Vinyl Epoxides

2.4 Samarium-Mediated Electrophilic Ring Opening of Vinyl and Alkynyl Epoxides

2.5 Titanium-Mediated Electrophilic Ring Opening of Epoxides

2.6 Platinum, Palladium, and Nickel-Mediated Electrophilic Ring Opening of 1,1-Dimethyl Ethylene Oxide

3 Catalytic Electrophilic Ring Opening of Small Heterocycles

3.1 Titanium-Catalyzed Electrophilic Ring Opening of Epoxides

3.2 Palladium-Catalyzed Electrophilic Ring Opening of Vinyl and Alkynyl Small Heterocycles

3.3 Iron-Catalyzed Electrophilic Ring Opening of Oxetanes

3.4 Scandium-Catalyzed Electrophilic Ring Opening of Vinyl Epoxides

3.5 Iridium-Catalyzed Electrophilic Ring Opening of 2-Methyl 2-Vinyl­oxiranes

3.6 Nickel-Catalyzed Electrophilic Ring Opening of Epoxides and Aziridines

3.7 Nickel–Titanium-Cocatalyzed Electrophilic Ring Opening of Epoxides

4 Summary

 
  • References


    • For selected reviews on nucleophilic ring opening of small-ring heterocycles, see:
    • 1a Wang C. Luo L. Yamamoto H. Acc. Chem. Res. 2016; 49: 193
    • 1b Meninno S. Lattanzi A. Chem. Eur. J. 2016; 22: 3632
    • 1c Saddique FA. Zahoor AF. Faiz S. Naqvi SA. R. Usman M. Ahmad M. Synth. Commun. 2016; 46: 831
    • 1d Pineschi M. Synlett 2014; 25: 1817
    • 1e Wang P.-A. Beilstein J. Org. Chem. 2013; 9: 1677
    • 1f Stanković S. D’hooghe M. Catak S. Eum H. Waroquier M. Van Speybroeck V. De Kimpe N. Ha H.-J. Chem. Soc. Rev. 2012; 41: 643
    • 1g Lu P. Tetrahedron 2010; 66: 2549
    • 1h Schneider C. Synthesis 2006; 3919
    • 1i Hu XE. Tetrahedron 2004; 60: 2701
    • 1j Pastor MI. Yus M. Curr. Org. Chem. 2005; 9: 1
    • 1k Jacobsen E. Acc. Chem. Res. 2000; 33: 421
    • 2a Barluenga J. Flórez J. Yus M. J. Chem. Soc., Perkin Trans. 1 1983; 3019
    • 2b Bartmann E. Angew. Chem., Int. Ed. Engl. 1986; 25: 653
  • 3 Mudryk B. Cohen T. J. Org. Chem. 1989; 54: 5657
  • 4 Mudryk B. Shook CA. Cohen T. J. Am. Chem. Soc. 1990; 112: 6389
  • 5 Mudryk B. Cohen T. J. Org. Chem. 1991; 56: 5760
  • 6 Bachki A. Falvello LR. Foubelo F. Yus M. Tetrahedron: Asymmetry 1997; 8: 2633
  • 7 For a review on Nozaki–Hiyama–Kishi reactions, see: Fürstner A. Chem. Rev. 1999; 99: 991
  • 8 Fujimura M. Takai K. Utimoto K. J. Org. Chem. 1990; 55: 1705
  • 9 Masuyama Y. Nakata J. Kurusu Y. J. Chem. Soc., Perkin Trans. 1 1991; 2598
  • 10 Aurrecoechea JM. Iztueta E. Tetrahedron Lett. 1995; 36: 7129
  • 11 Aurrecoechea JM. Solay M. Tetrahedron Lett. 1995; 36: 2501
  • 12 Nugent WA. RajanBabu TV. J. Am. Chem. Soc. 1988; 110: 8561
  • 13 RajanBabu TV. Nugent WA. J. Am. Chem. Soc. 1989; 111: 4525
  • 14 Fernández-Mateos A. Martín de la Nava E. Coca GP. Ramos Silva A. Rubio González R. Org. Lett. 1999; 1: 607
  • 15 Fernández-Mateos A. Burón LM. Rabanedo Clemente R. Ramos Silva AI. Rubio González R. Synlett 2004; 1011
  • 16 Ruano G. Grande M. Anaya J. J. Org. Chem. 2002; 67: 8243
  • 17 Ruano G. Martiáñez J. Grande M. Anaya J. J. Org. Chem. 2003; 68: 2024
  • 18 Anaya J. Fernández-Mateos A. Grande M. Martiáñez J. Ruano G. Rubio-González MR. Tetrahedron 2003; 59: 241
  • 19 Chakraborty TK. Samanta R. Das S. J. Org. Chem. 2006; 71: 3321
  • 20 Hase T. Miyashita A. Nohira H. Chem. Lett. 1988; 17: 219
  • 21 Gansäuer A. Pierobon M. Bluhm H. Angew. Chem. Int. Ed. 1998; 37: 101
    • 22a Funken N. Mühlhaus F. Gansäuer A. Angew. Chem. Int. Ed. 2016; 55: 12030
    • 22b Henriques DS. G. Zimmer K. Klare S. Meyer A. Rojo-Wiechel E. Bauer M. Sure R. Grimme S. Schiemann O. Flowers RA. II. Gansäuer A. Angew. Chem. Int. Ed. 2016; 55: 7671
    • 22c Gansäuer A. Hildebrandt S. Michelmann A. Dahmen T. von Laufenberg D. Kube C. Fianu GD. Flowers RA. II. Angew. Chem. Int. Ed. 2015; 54: 7003
    • 22d Gansäuer A. Klatte M. Brändle GM. Friedrich J. Angew. Chem. Int. Ed. 2012; 51: 8891
    • 22e Gansäuer A. Behlendorf M. von Laufenberg D. Fleckhaus A. Kube C. Sadasivam DV. Flowers RA. II. Angew. Chem. Int. Ed. 2012; 51: 4739
    • 22f Gansäuer A. Fan C.-A. Keller F. Keil J. J. Am. Chem. Soc. 2007; 129: 3484
    • 22g Gansäuer A. Barchuk A. Keller F. Schmitt M. Grimme S. Gerenkamp M. Mück-Lichtenfeld C. Daasbjerg K. Svith H. J. Am. Chem. Soc. 2007; 129: 1359
    • 22h Gansäuer A. Rinker B. Pierobon M. Grimme S. Gerenkamp M. Mück-Lichtenfeld C. Angew. Chem. Int. Ed. 2003; 42: 3687
    • 23a Gansäuer A. Bluhm H. Pierobon M. J. Am. Chem. Soc. 1998; 120: 12849
    • 23b Gansäuer A. Bluhm H. Rinker B. Narayan S. Schick M. Lauterbach T. Pierobon M. Chem. Eur. J. 2003; 9: 531
  • 24 Gansäuer A. Pierobon M. Bluhm H. Angew. Chem. Int. Ed. 2002; 41: 3206
    • 25a Gansäuer A. Lauterbach T. Geich-Gimbel D. Chem. Eur. J. 2004; 10: 4983
    • 25b Friedrich J. Walczak K. Dolg M. Piestert F. Lauterbach T. Worgull D. Gansäuer A. J. Am. Chem. Soc. 2008; 130: 1788
  • 26 Gansäuer A. Worgull D. Knebel K. Huth I. Schnakenburg G. Angew. Chem. Int. Ed. 2009; 48: 8882
  • 27 Gansäuer A. Bluhm H. Lauterbach T. Adv. Synth. Catal. 2001; 343: 785
    • 28a Araki S. Kameda K. Tanaka J. Hirashita T. Yamamura H. Kawai M. J. Org. Chem. 2001; 66: 7919
    • 28b Araki S. Kameda S. Kameda K. Hirashita T. Synthesis 2003; 751
    • 29a Anzai M. Yanada R. Fujii N. Ohno H. Ibuka T. Takemoto Y. Tetrahedron 2002; 58: 5231
    • 29b Takemoto Y. Anzai M. Yanada R. Fujii N. Ohno H. Ibuka T. Tetrahedron Lett. 2001; 42: 1725
    • 30a Ohno H. Hamaguchi H. Tanaka T. Org. Lett. 2000; 2: 2161
    • 30b Ohno H. Hamaguchi H. Tanaka T. J. Org. Chem. 2001; 66: 1867
  • 31 Klimczak UK. Zambroń BK. Chem. Commun. 2015; 6796
    • 32a Sugiyama Y.-K. Heigozono S. Okamoto S. Org. Lett. 2014; 16: 6278
    • 32b Sugiyama Y.-K. Heigozono S. Tamura K. Okamoto S. Synthesis 2014; 48: 2823
  • 33 Lautens M. Ouellet SG. Raeppel S. Angew. Chem. Int. Ed. 2000; 39: 4079
  • 34 Lautens M. Tayama E. Nguyen D. Org. Lett. 2004; 6: 345
  • 35 Brunner B. Stogaitis N. Lautens M. Org. Lett. 2006; 8: 3473
  • 36 Feng J. Garza VJ. Krische MJ. J. Am. Chem. Soc. 2014; 136: 8911
  • 37 Zhao Y. Weix DJ. J. Am. Chem. Soc. 2014; 136: 48
  • 38 Woods BP. Orlandi M. Huang C.-Y. Sigman MS. Doyle AG. J. Am. Chem. Soc. 2017; 139: 5688
  • 39 Zhao Y. Weix DJ. J. Am. Chem. Soc. 2015; 137: 3237