Synthesis 2017; 49(24): 5335-5338
DOI: 10.1055/s-0036-1589103
psp
© Georg Thieme Verlag Stuttgart · New York

A Practical Gram-Scale Synthesis of Acrylohydroxamic Acid

Bruce C. Hamper*a, Brendan T. Sullivana, Nigam P. Rathb, Christopher D. Spillinga
  • aDepartment of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, USA   Email: hamperb@umsl.edu
  • bCenter for Nanoscience, Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121, USA
This work was supported by a contract from ALKYMOS, Inc. Funding for the ApexII diffractometer was provided by the National Science Foundation (MRI, CHE-0420497).
Further Information

Publication History

Received: 15 July 2017

Accepted after revision: 09 August 2017

Publication Date:
30 August 2017 (eFirst)

Abstract

Acrylohydroxamic acid, which is a useful monomer for the preparation of polymeric materials, has been prepared in a straightforward, two-step synthesis from readily available starting materials. The key steps are coupling of acrylic acid with O-tetrahydropyranylhydroxyl amine to provide protection of the hydroxylamine functionality, followed by acid cleavage of the protecting group.

Supporting Information

 
  • References

  • 1 Roy S. Sutivisedak N. Hamper BC. Lyss AM. Spilling CD. Synthesis 2015; 47: 3669
    • 2a Hamper BC. J. Org. Chem. 1988; 53: 5558
    • 2b Hamper BC. Org. Synth. 1992; 70: 246
  • 3 Hamper BC. Kolodziej SA. Scates AM. Smith RG. Cortez E. J. Org. Chem. 1998; 63: 708
    • 4a Hamper BC. J. Fluorine Chem. 1990; 48: 123
    • 4b Hamper BC. Kurtzweil ML. Beck JP. J. Org. Chem. 1992; 57: 5680
    • 4c Kolodziej SA. Hamper BC. Tetrahedron Lett. 1996; 37: 5277
  • 5 Yokel RA. Harris WR. Spilling CD. Zhan C.-G. US Pat. Appl. Publ US 20090261043, 2009 ; Chem. Abstr. 2009, 151, 492478
  • 6 Porcheddu A. Giacomelli G. In The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids, Part 1 . Rappoport Z. Liebman J. Wiley; West Sussex; 2009. Chapt. 6,; 16
  • 7 Song C. Wu A. Adv. Mater. Res. 2014; 1015: 369
  • 8 Nagakura T. Hasegawa R. Yoshida H. Hishinuma M. Suzuki F. Otsuka K. Jpn. Kokai Tokkyo Koho JP 2017052887, 2017 ; CAPlus 2017:424726
  • 9 Jones LR. Neuffer L. J. Am. Chem. Soc. 1917; 39: 659
  • 10 Becke F. Mutz G. Chem. Ber. 1965; 98: 1322
  • 11 Hosseini SH. J. Appl. Polym. Sci. 2011; 121: 2338
  • 12 Wei X. Wang X. Li N. Faming Zhuanli Shenqing. CN 103204963, 2013 ; Chem. Abstr. 2012, 175, 229008
  • 13 Kolodziej SA. Hockerman SL. De Crescenzo GA. McDonald JJ. Mischke DA. Munie GE. Fletcher TR. Stehle NW. Swearingen C. Becker DP. Bioorg. Med. Chem. Lett. 2010; 20: 3561
  • 14 Bressi JC. Jong R. Wu Y. Jennings AJ. Brown JW. O’Connell S. Tari LW. Skene RJ. Vu P. Navre M. Cao X. Gangloff AR. Bioorg. Med. Chem. Lett. 2010; 20: 3138