Synlett 2018; 29(02): 215-218
DOI: 10.1055/s-0036-1589106
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Indoline-2,3-diones by Radical Coupling of Indolin-2-ones with tert-Butyl Hydroperoxide

Wei-Wei Ying ◊
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   eMail: weiwenting@nbu.edu.cn
,
Wen-Ming Zhu ◊
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   eMail: weiwenting@nbu.edu.cn
,
Hongze Liang
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   eMail: weiwenting@nbu.edu.cn
,
Wen-Ting Wei*
School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. of China   eMail: weiwenting@nbu.edu.cn
› Institutsangaben
This research is sponsored by research funds of NBU (No. ZX2016000706), the foundation of Ningbo University (No. XYL17009), and the K. C. Wong Magna Fund in Ningbo University.
Weitere Informationen

Publikationsverlauf

Received: 23. Juli 2017

Accepted after revision: 22. August 2017

Publikationsdatum:
14. September 2017 (online)


These authors contributed equally to this work.

Abstract

A novel strategy has been developed for the synthesis of indoline-2,3-diones through a metal-free radical-coupling reaction. Alkyl radicals derived from indolin-2-ones through a radical-transfer reaction combine with the tert-butylhydroperoxy radical readily generated from commercially available tert-butyl hydroperoxide to afford 3-(tert-­butylperoxy)indolin-2-one intermediates that can be further transformed into indoline-2,3-diones under air. This strategy provides a ­simple and efficient route to the construction of a C=O bond without the use of any metal catalyst or base.

Supporting Information

 
  • References and Notes

    • 1a Guo S.-r. Kumar PS. Yang M. Adv. Synth. Catal. 2017; 359: 2
    • 1b Taylor P. Mechanism and Synthesis 2002
    • 1c Yi H. Zhang G. Wang H. Huang Z. Wang J. Singh AK. Lei A. Chem. Rev. 2017; 117: 9016

      For selected papers on radical-coupling reactions for constructing C–C bonds, see:
    • 2a Huang H.-Y. Cheng L. Liu J.-J. Wang D. Liu L. Li C.-J. J. Org. Chem. 2017; 82: 2656
    • 2b Ding W. Lu L.-Q. Liu J. Liu D. Song H.-T. Xiao W.-J. J. Org. Chem. 2016; 81: 7237
    • 2c Liu D. Li Y. Qi X. Liu C. Lan Y. Lei A. Org. Lett. 2015; 17: 998
    • 2d Jeffrey JL. Petronijević FR. MacMillan DW. J. Am. Chem. Soc. 2015; 137: 8404

      For selected papers on radical-coupling reactions for constructing carbon–heteroatom bonds, see:
    • 3a Huang Z. Zhang D. Qi X. Yan Z. Wang M. Yan H. Lei A. Org. Lett. 2016; 18: 2351
    • 3b Zhou L. Tang S. Qi X. Lin C. Liu K. Liu C. Lan Y. Lei A. Org. Lett. 2014; 16: 3404
    • 3c Ke J. Tang Y.-L. Yi H. Li Y. Cheng Y. Liu C. Lei A. Angew. Chem. Int. Ed. 2015; 54: 6604
    • 4a Hashemi H. Saberi D. Poorsadeghic S. Niknam K. RSC Adv. 2017; 7: 7619
    • 4b Chen X. Li Y. Wu M. Guo H. Jiang L. Wang J. Sun S. RSC Adv. 2016; 6: 102023
    • 5a He H. Pei B.-J. Lee AW. M. Green Chem. 2009; 11: 1857
    • 5b Majji G. Rajamanickam S. Khatun N. Santra SK. Patel BK. J. Org. Chem. 2015; 80: 3440
    • 5c Zhao J. Fang H. Han J. Pan Y. Org. Lett. 2014; 16: 2530
    • 5d Yi N. Zhang H. Xu C. Deng W. Wang R. Peng D. Zeng Z. Xiang J. Org. Lett. 2016; 18: 1780
    • 5e Li Y.-J. Yan N. Liu C.-H. Yu Y. Zhao Y.-L. Org. Lett. 2017; 19: 1160
  • 6 Yang W.-C. Weng S.-S. Ramasamy A. Rajeshwaren G. Liao Y.-Y. Chen C.-T. Org. Biomol. Chem. 2015; 13: 2385
    • 7a Yin Z. Sun P. J. Org. Chem. 2012; 77: 11339
    • 7b Ali W. Behera A. Guin S. Patel BK. J. Org. Chem. 2015; 80: 5625
    • 7c Yan K. Yang D. Wei W. Li G. Sun M. Zhang Q. Tian L. Wang H. RSC Adv. 2015; 5: 100102
  • 8 Wei W.-T. Li H.-B. Song R.-J. Li J.-H. Chem. Commun. 2015; 51: 11325
  • 9 Majji G. Guin S. Gogoi A. Rout SK. Patel BK. Chem. Commun. 2013; 49: 3031
  • 10 Liu W. Li Y. Liu K. Li Z. J. Am. Chem. Soc. 2011; 133: 10756
  • 11 Cheng J.-K. Loh T.-P. J. Am. Chem. Soc. 2015; 137: 42
    • 12a Wei W.-T. Zhu W.-M. Ying W.-W. Wu Y. Huang Y.-L. Liang HZ. Org. Biomol. Chem. 2017; 15: 5254
    • 12b Wei W.-T., Zhu W.-M., Liang W., Wu Y., Huang H.-Y., Huang Y.-L., Luo J., Liang H.; Synlett; DOI: 10.1055/s-0036-1589038.
  • 13 Indoline-2,3-diones 3a–l; General Procedure To a Schlenk tube were added the appropriate indolin-2-one 1 (0.3 mmol), t-BuOOH (0.6 mmol), and DCE (2 mL). The mixture was then stirred at 85 °C under air for the indicated time until the starting material was completely consumed (TLC). The resulting mixture was washed with brine (3 × 5 mL), and the aqueous phase was extracted with EtOAc (3 × 10 mL). The combined organic extracts were dried (Na2SO4) and concentrated under vacuum to give a crude product that was purified by column chromatography [silica gel, hexane–EtOAc (10:1)]. The products were analyzed by 1H and 13C NMR and MS (see Supporting Information). 1H-Indoline-2,3-dione (3a) Red solid; yield: 0.0357 g (81%); mp 122.8–123.4 °C; 1H NMR (400 MHz, DMSO-d 6): δ = 11.07 (s, 1 H), 7.59 (t, J = 8.0 Hz, 1 H), 7.50 (d, J = 7.6 Hz, 1 H), 7.07 (t, J = 7.6 Hz, 1 H), 6.92 (d, J = 8.0 Hz, 1 H). 13C NMR (100 MHz, DMSO-d 6): δ = 184.8, 159.8, 151.2, 138.8, 125.1, 123.2, 118.2, 112.7. LRMS (EI, 70 eV): m/z (%) = 147 (M+, 61), 119 (100), 92 (74).
  • 14 Wei W.-T. Yang X.-H. Li H.-B. Li J.-H. Adv. Synth. Catal. 2015; 357: 59
    • 15a Zhang X. Wang L. Green Chem. 2012; 14: 2141
    • 15b Tan J. Zheng T. Yu Y. Xu K. RSC Adv. 2017; 7: 15176