Synthesis
DOI: 10.1055/s-0036-1589107
paper
© Georg Thieme Verlag Stuttgart · New York

Sixfold Peripheral Halogenation of Tribenzotriquinacenes: An Alternative Access to Useful TBTQ Building Blocks

Jens Linkea, Natalia Badera, Jörg Tellenbrökera, Dietmar Kuck*a, b
  • aDepartment of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
  • bCenter for Molecular Materials (CM2), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany   Email: dietmar.kuck@uni-bielefeld.de
This work was supported by the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG, KU 663/16-1).
Further Information

Publication History

Received: 19 July 2017

Accepted after revision: 23 August 2017

Publication Date:
14 September 2017 (eFirst)

Abstract

Sixfold electrophilic bromination and iodination of the molecular periphery of the bridgehead-tetramethylated tribenzotriquinac­ene (TBTQ) with N-bromosuccinimide (NBS) and N-iodosuccinimide (NIS), respectively, under various conditions was studied to develop an alternative preparative approach to the classical Lewis acid catalyzed bromination. Running these reactions in trifluoroacetic acid either in pure form or with chloroform as a co-solvent at elevated temperatures, or under sonication or microwave irradiation was found to give increasingly fast and efficient conversion of TBTQ to the target hexahalogenated TBTQ derivatives in excellent yields. NIS was found to be markedly more reactive than NBS, whereas N-chlorosuccimide reacted hardly. The new method was applied to the sixfold functionalization of the 4b,8b,12b-tripropyl-12d-methyl-TBTQ analogue to give the corresponding hexabromo and hexaiodo derivatives. Some sixfold C–C cross-coupling reactions of hexahalo derivatives of TBTQ were carried out in excellent yields to enlarge the three spatially orthogonal indane wings of the TBTQ core.

Supporting Information

 
  • References

    • 1a Kuck D. Angew. Chem., Int. Ed. Engl. 1984; 23: 508
    • 1b Kuck D. Lindenthal T. Schuster A. Chem. Ber. 1992; 125: 1449
    • 1c Kuck D. Schuster A. Ohlhorst B. Sinnwell V. de Meijere A. Angew. Chem., Int. Ed. Engl. 1989; 28: 595
    • 2a Kuck D. Chem. Rev. 2006; 106: 4885
    • 2b Kuck D. Pure Appl. Chem. 2006; 78: 749
    • 2c Zhang TX. Zhou L. Cao XP. Kuck D. Chin. J. Org. Chem. 2007; 27: 946
    • 2d Kuck D. Chem. Rec. 2015; 15: 1075
    • 3a Tellenbröker J. Kuck D. Angew. Chem. Int. Ed. 1999; 38: 919
    • 3b Kuck D. Schuster A. Krause RA. Tellenbröker J. Exner CP. Penk M. Bögge H. Müller A. Tetrahedron 2001; 57: 3587
  • 4 Kuck D. Schuster A. Paisdor B. Gestmann D. J. Chem. Soc., Perkin Trans. 1 1995; 721
    • 5a Markopoulos G. Henneicke L. Shen J. Okamoto Y. Jones PG. Hopf H. Angew. Chem. Int. Ed. 2012; 51: 12884
    • 5b Saravanakumar R. Markopoulos G. Bahrin LG. Jones PG. Hopf H. Synlett 2013; 24: 453
    • 5c Brandenburg JG. Grimme S. Jones PG. Markopoulos G. Hopf H. Cyranski MK. Kuck D. Chem. Eur. J. 2013; 19: 9930
    • 6a Henne S. Bredenkötter B. Alaghemandi M. Bureekaew S. Schmid R. Volkmer D. ChemPhysChem 2014; 15: 3855
    • 6b Bredenkötter B. Grzywa M. Alaghemandi M. Schmid R. Herrebout W. Bultinck P. Volkmer D. Chem. Eur. J. 2014; 20: 9100
    • 6c Henne S. Bredenkötter B. Dehghan Baghi AA. Schmid R. Volkmer D. Dalton Trans. 2012; 41: 5995
    • 6d Bredenkötter B. Henne S. Volkmer D. Chem. Eur. J. 2007; 13: 9931
  • 7 Kirchwehm Y. Damme A. Kupfer T. Braunschweig H. Krüger A. Chem. Commun. 2012; 48: 1502
    • 8a Ip H.-W. Ng C.-F. Chow H.-F. Kuck D. J. Am. Chem. Soc. 2016; 138: 13778
    • 8b Ip H.-W. Chow H.-F. Kuck D. Org. Chem. Front. 2017; 4: 817
  • 9 Harig M. Neumann B. Stammler H.-G. Kuck D. Eur. J. Org. Chem. 2004; 2381
  • 10 Vile J. Carta M. Grazia Bezzu C. McKeown NB. Polym. Chem. 2011; 2: 2257
    • 11a Klotzbach S. Scherpf T. Beuerle F. Chem. Commun. 2014; 50: 12454
    • 11b Klotzbach S. Beuerle F. Angew. Chem. Int. Ed. 2015; 54: 10356
    • 11c Dhara A. Beuerle F. Chem. Eur. J. 2015; 21: 17391
    • 11d Dhara A. Weinmann J. Krause A.-M. Beuerle F. Chem. Eur. J. 2016; 22: 12473
    • 12a Beaudoin D. Rominger F. Mastalerz M. Synthesis 2015; 47: 3846
    • 12b Beaudoin D. Rominger F. Mastalerz M. Eur. J. Org. Chem. 2016; 4470
    • 12c Beaudoin D. Rominger F. Mastalerz M. Angew. Chem. Int. Ed. 2016; 55: 15599
    • 12d Beaudoin D. Rominger F. Mastalerz M. Angew. Chem. Int. Ed. 2017; 56: 1244
    • 13a Mughal EU. Kuck D. Chem. Commun. 2012; 48: 8880
    • 13b Mughal EU. Neumann B. Stammler H.-G. Kuck D. Eur. J. Org. Chem. 2014; 7469
  • 14 Klett J. Chem. Commun. 2014; 50: 7929
    • 15a Mughal EU. Neumann B. Stammler H.-G. Li Z.-M. Wei J. Kuck D. Cao X.-P. Eur. J. Org. Chem. 2015; 2835
    • 15b Wie J. Li Z.-M. Jin X.-J. Yao X.-J. Cao X.-P. Chow H.-F. Kuck D. Chem. Asian J. 2015; 10: 1150
    • 16a Georghiou PE. Dawe L. Tran HA. Strübe J. Neumann B. Stammler H.-G. Kuck D. J. Org. Chem. 2008; 73: 9040
    • 16b Wang T. Li Z.-Y. Xie A.-L. Yao X.-J. Cao X.-P. Kuck D. J. Org. Chem. 2011; 76: 3231
    • 17a Xu W.-R. Cao X.-P. Chow H.-F. Kuck D. J. Org. Chem. 2014; 79: 9335
    • 17b Xu W.-R. Cao X.-P. Chow H.-F. Kuck D. J. Org. Chem. 2015; 80: 4221
    • 17c Xu W.-R. Xia G.-J. Chow H.-F. Cao X.-P. Kuck D. Chem. Eur. J. 2015; 21: 12011
  • 18 Lucchesini F. Grasse M. Neumann B. Stammler H.-G. Tellenbröker J. Kuck D. Eur. J. Org. Chem. 2016; 2828

    • Further alternative functionalization methods of the TBTQ framework:
    • 19a Kuck D. Schuster A. Fusco C. Fiorentino M. Curci R. J. Am. Chem. Soc. 1994; 116: 2375
    • 19b Haag R. Ohlhorst B. Noltemeyer M. Fleischer R. Stalke D. Schuster A. Kuck D. de Meijere A. J. Am. Chem. Soc. 1995; 117: 10474
    • 19c Strübe J. Neumann B. Stammler H.-G. Kuck D. Chem. Eur. J. 2009; 15: 2256
    • 19d Mughal EU. Kuck D. Org. Biomol. Chem. 2010; 8: 5383
    • 19e Tellenbröker J. Kuck D. Beilstein J. Org. Chem. 2011; 7: 329
    • 19f Henne S. Bredenkötter B. Volkmer D. Appl. Surf. Sci. 2015; 356: 645
    • 19g Zhang Y.-F. Tian W.-F. Cao X.-P. Kuck D. Chow H.-F. J. Org. Chem. 2016; 81: 2308

      Functionalization of the central position C-12d:
    • 20a Schuster A. Kuck D. Angew. Chem., Int. Ed. Engl. 1991; 30: 1699
    • 20b Dhara A. Weinmann J. Krause A.-M. Beuerle F. Chem. Eur. J. 2016; 22: 12473
    • 21a Zhou L. Cao X.-P. Neumann B. Stammler H.-G. Kuck D. Synlett 2005; 2771
    • 21b Cao X.-P. Barth D. Kuck D. Eur. J. Org. Chem. 2005; 3482
    • 21c Zhou L. Zhang T.-X. Li B.-R. Cao X.-P. Kuck D. J. Org. Chem. 2007; 72: 6382
    • 21d Wang T. Zhang Y.-F. Hou Q.-Q. Xu W.-R. Cao X.-P. Chow H.-F. Kuck D. J. Org. Chem. 2013; 78: 1062
    • 21e Niu W.-X. Yang E.-Q. Shi Z.-F. Cao X.-P. Kuck D. J. Org. Chem. 2012; 77: 1422
    • 21f Mughal EU. Eberhard J. Kuck D. Chem. Eur. J. 2013; 19: 16029
  • 22 Mitchell RH. Lai Y.-H. Williams RV. J. Org. Chem. 1979; 44: 4733
  • 23 Bartoli S. Cipollone A. Squarcia A. Madami A. Fattori D. Synthesis 2009; 1305
  • 24 Andersh B. Murphy DL. Olson RJ. Synth. Commun. 2000; 30: 2091
  • 25 Kubiczak GA. Oesch F. Borlakoglu JT. Kunz H. Robertson LW. J. Agric. Food Chem. 1989; 37: 1160
  • 26 Fischer F. Chem. Unserer Zeit 2002; 36: 240
  • 27 Niu W.-X. Wang T. Hou Q.-Q. Li Z.-Y. Cao X.-P. Kuck D. J. Org. Chem. 2010; 75: 6704
  • 28 Hirota K. Kitade Y. Kanbe Y. Maki Y. J. Org. Chem. 1992; 57: 5268
  • 29 Blum J. Gelman D. Baidossi W. Shakh E. Rosenfeld A. Aizenshtat Z. Wassermann BC. Frick M. Heymer B. Schutte S. Wernik S. Schumann H. J. Org. Chem. 1997; 62: 8681
  • 30 Nierle J. Barth D. Kuck D. Eur. J. Org. Chem. 2004; 867
  • 31 Tang X.-Q. Harvey RG. J. Org. Chem. 1995; 60: 3568
  • 32 Mallory FB. Mallory CW. Org. React. 1984; 30: 1
    • 33a Sato T. Goto Y. Hata K. Bull. Chem. Soc. Jpn. 1967; 40: 1994
    • 33b Liu L. Yang B. Katz TJ. Poindexter MK. J. Org. Chem. 1991; 56: 3769
    • 34a Bosse D. de Meijere A. Angew. Chem., Int. Ed. Engl. 1974; 13: 663
    • 34b Spielmann W. Fick H.-H. Meyer L.-U. de Meijere A. Tetrahedron Lett. 1976; 4057