Synlett 2018; 29(02): 219-224
DOI: 10.1055/s-0036-1589112
letter
© Georg Thieme Verlag Stuttgart · New York

Elemental Sulfur-Mediated Decarboxylative Redox Cyclization ­Reaction: Copper-Catalyzed Synthesis of 2-Substituted Benzo­thiazoles

Xin Wanga, Xiaotong Lia, Renhe Hua, Zhao Yanga, Ren Gua, Sai Dinga, Pengyi Lia, Shiqing Han*a, b
  • aCollege of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, P. R. of China   Email: hanshiqing@njtech.edu.cn
  • bKey Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, P. R. of China
We thank the National High Technology Research and Development Program of China (863 Program 2014AA022100), Six Talent Peaks Project in Jiangsu Province (No. 2015-SWYY-016) and Graduate Student Innovation Project in Jiangsu Province (Grant No. SJCX17_0287) for supporting this research.
Further Information

Publication History

Received: 30 July 2017

Accepted after revision: 03 September 2017

Publication Date:
27 September 2017 (eFirst)

Abstract

A S8-mediated directed decarboxylative redox-cyclization strategy for the synthesis of 2-substituted benzothiazoles from o-iodoanilines, arylacetic acids, and elemental sulfur catalyzed by cheap copper metal has been developed. This reaction is operationally simple, ligand-free, compatible with a wide range of functional groups, and provides the desired products in good to excellent yields. In addition, a gram-scale experiment was carried out to furnish PMX 610, an antitumor drug.

Supporting Information

 
  • References and Notes

    • 1a Evindar G. Batey RA. J. Org. Chem. 2006; 71: 1802
    • 1b Samanta S. Das S. Biswas P. J. Org. Chem. 2013; 78: 11184
    • 1c Nguyen TB. Ermolenko L. Al-Mourabit A. Org. Lett. 2013; 15: 4218
    • 1d Banerjee M. Chatterjee A. Kumar V. Bhutia ZT. Khandare DG. Majik MS. Roy BG. RSC Adv. 2015; 74: 39606
    • 1e Urzúa JI. Contreras R. Salas CO. Ricardo AT. RSC Adv. 2016; 85: 82401
    • 1f Hu R. Li X. Tong Y. Miao D. Pan Q. Jiang Z. Gan H. Han S. Synlett 2016; 27: 1387
    • 1g He K. Tan F. Zhou C. Zhou G. Yang X. Li Y. Angew. Chem. Int. Ed. 2017; 56: 3080
    • 2a Bradshaw TD. Westwell AD. Curr. Med. Chem. 2004; 11: 1009
    • 2b Choi SJ. Park HJ. Lee SK. Kim SW. Han G. Choo HY. P. Bioorg. Med. Chem. 2006; 4: 1229
    • 2c Weekes AA. Weatwell AD. Curr. Med. Chem. 2009; 19: 2430
    • 2d Shi H. Ji S. Bian B. Dyes Pigm. 2007; 73: 394
    • 2e Sharma H. Singh N. Jang DO. Green Chem. 2014; 12: 4922
    • 3a Bryson HM. Fulton B. Benfield PM. Drugs 1996; 52: 549
    • 3b Ding Q. Huang X. Wu J. J. Comb. Chem. 2009; 11: 1047
    • 3c Mortimer CG. Wells G. Crochard JP. Stone EL. Bradshaw TD. Stevens MF. G. Westwell AD. J. Med. Chem. 2006; 49: 179
    • 3d Gao Y. Song Q. Cheng G. Cui X. Org. Biomol. Chem. 2014; 12: 1044
    • 4a Sakamoto T. Mori K. Akiyama T. Org. Lett. 2012; 14: 3312
    • 4b Liao Y. Qi H. Chen S. Jiang P. Zhou W. Deng G. Org. Lett. 2012; 14: 6004
    • 4c Sun Y. Jiang H. Wu W. Org. Lett. 2013; 15: 1598
    • 4d Tong Y. Pan Q. Jiang Z. Miao D. Shi X. Han S. Tetrahedron Lett. 2014; 55: 5499
    • 5a Do HQ. Khan RM. Daugulis O. J. Am. Chem. Soc. 2008; 130: 15185
    • 5b Li B. Yang S. Shi Z. Synlett 2008; 949
    • 5c Huang J. Chan J. Chen Y. Borths CJ. Baucom KD. Larsen RD. Faul MM. J. Am. Chem. Soc. 2010; 132: 3674
    • 5d Liu B. Guo Q. Cheng Y. Lan J. You J. Chem. Eur. J. 2011; 17: 13415
    • 5e Nishino M. Hirano K. Satoh T. Miura M. Angew. Chem. 2012; 124: 7099
  • 6 Deng H. Li Z. Ke F. Zhou X. Chem. Eur. J. 2012; 18: 4840
  • 7 Wang R. Ding Y. Liu H. Peng S. Ren J. Li L. Tetrahedron Lett. 2014; 55: 945
    • 8a Wang Q. Zhang S. Guo F. Zhang B. Hu P. Wang Z. J. Org. Chem. 2012; 77: 11161
    • 8b Qin X. Sun D. You Q. Cheng Y. Lan J. You J. Org. Lett. 2015; 17: 1762
    • 8c Yang B. Xu X. Qing F. Org. Lett. 2016; 18: 5956
    • 8d Biafora A. Krause T. Hackenberger D. Belitz F. Gooßen L. Angew. Chem. 2016; 55: 14752
    • 8e Vandamme M. Bouchard L. Gilbert A. Keita M. Paquin J. Org. Lett. 2016; 18: 6468
    • 8f Liu L. Wang Z. Green Chem. 2017; 19: 2076
    • 9a Huang Y. He X. Lin X. Rong M. Weng Z. Org. Lett. 2014; 16: 3284
    • 9b Nguyen TB. Ermolenko L. Retailleau P. Al-Mourabit A. Angew. Chem. Int. Ed. 2014; 53: 13808
    • 9c Zhang G. Yi H. Chen H. Bian C. Liu C. Lei A. Org. Lett. 2014; 16: 6156
    • 9d Xu J. Zhang L. Li X. Gao Y. Tang G. Zhao Y. Org. Lett. 2016; 18: 1266
    • 9e Meng L. Fujikawa T. Kuwayama M. Segawa Y. J. Am. Chem. Soc. 2016; 138: 10351
    • 9f Ravi C. Reddy NN. K. Pappula V. Samanta S. Adimurthy S. J. Org. Chem. 2016; 81: 9964
  • 10 Gan H. Miao D. Pan Q. Hu R. Li X. Han S. Chem. Asian J. 2016; 11: 1770
    • 11a Ray S. Das P. Banerjee B. Bhaumikb A. Mukhopadhyayet C. RSC Adv. 2015; 5: 72745
    • 11b Liu B. Zhu N. Hong H. Han L. Tetrahedron 2015; 71: 9287
    • 11c Du G. Zhu N. Han L. Hong H. Suo Q. Heterocycles 2015; 91: 1723
    • 12a Downer NK. Jackson YA. Org. Biomol. Chem. 2004; 2: 3039
    • 12b Bose SD. Idrees M. Srikanth B. Synthesis 2007; 819
    • 12c Cheng Y. Peng Q. Fan W. Li P. J. Org. Chem. 2014; 79: 5812
    • 13a Antonello S. Daasbjerg K. Jensen H. Taddei F. Maran F. J. Am. Chem. Soc. 2003; 125: 12905
    • 13b Jiang Y. Qin Y. Xie S. Zhang X. Dong J. Ma D. Org. Lett. 2009; 11: 5250
    • 13c Park N. Heo Y. Kunar MR. Kim Y. Song KH. Lee S. Eur. J. Org. Chem. 2012; 43: 1984
  • 14 Guntreddi T. Vanjari R. Singh KN. Org. Lett. 2014; 16: 3624
    • 15a Song Q. Feng Q. Zhou M. Org. Lett. 2013; 15: 5990
    • 15b Dang P. Zeng W. Liang Y. Org. Lett. 2015; 17: 34
    • 15c Fan L. Shang Y. Li X. Hua W. Chin. Chem. Lett. 2015; 26: 77
  • 16 General Procedure for the Synthesis of Benzothiazoles A mixture of o-iodoaniline (0.5 mmol, 1 equiv), arylacetic acid (0.6 mmol), elemental sulfur (1.5 mmol), Cu(OAc)2·H2O (20 mmol%), and NaOH (1.0 mmol) in DMSO (3 mL) was put into a sealed pressure vessel (25 mL) containing a magnetic stirring bar. The tube was purged with nitrogen three times, and then capped and stirred in a preheated oil bath at 130 °C for 24 h. The reaction mixture then cooled to r.t. and extracted with EtOAc (3 × 10 mL), the organic layer was washed with sat. NaCl (2 × 10 mL), dried over anhydrous Na2SO4, evaporated under vacumm, and then purified by silica gel column chromato­graphy (PE–EtOAc 200:1) to give pure compound 3aa in 98% yield. Selected Spectral Data for 2-Phenylbenzothiazole (3aa) 1H NMR (300 MHz, CDCl3): δ = 8.09–8.11 (m, 3 H), 7.90 (d, J = 7.8 Hz, 1 H), 7.48–7.52 (m, 4 H), 7.38 (t, J = 7.5 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 168.0, 154.1, 135.1, 133.6, 130.9, 129.0, 127.5, 126.2, 125.1, 123.2, 121.6.