Synlett 2017; 28(19): 2633-2636
DOI: 10.1055/s-0036-1589121
letter
© Georg Thieme Verlag Stuttgart · New York

Indium(III) Iodide-Catalyzed Stereoselective Synthesis of β-Glucopyranosides by Using a Glucosyl Fluoride Donor with 2-O-Benzoyl-3,4,6-Tri-O-Benzyl Protection

Teng Ma
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. of China   Email: [email protected]
,
Changwei Li
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. of China   Email: [email protected]
,
Zhan-xin Zhang
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. of China   Email: [email protected]
,
Zhaoyan Wang
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. of China   Email: [email protected]
,
Lan Yu*
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. of China   Email: [email protected]
,
Weihua Xue*
School of Pharmacy, Lanzhou University, Lanzhou, 730000, P. R. of China   Email: [email protected]
› Author Affiliations
We gratefully acknowledge the Fundamental Research Funds for the Central Universities, Lanzhou University (lzujbky-2015-307, lzujbky-2016-146, and lzujbky-2017-k25) and the National Science Foundation of China (21402075).
Further Information

Publication History

Received: 01 August 2017

Accepted after revision: 26 September 2017

Publication Date:
03 November 2017 (online)


Abstract

We have developed a novel protocol for glucosylation by adopting a glucosyl fluoride donor with 2-O-benzoyl-3,4,6-tri-O-benzyl protection. The protocol is useful for the ready assembly of β-linked functional glycoconjugates, and the reaction accommodates a broad range of substrates. Conveniently, water-tolerant and commercially available InI3 is used as a catalyst, and no other additional reagent is required. The method involves an interesting process for glucosyl fluoride activation and, in particular, permits the stereoselective construction of partially benzylated glucopyranosides carrying a selectively removable 2-O-benzoyl group, which hold great potential as glycosyl receptors for building further 1,2-glycosidic linkages.

Supporting Information

 
  • References and Notes

  • 1 Yu B. Zhang Y. Tang P. Eur. J. Org. Chem. 2007; 5145
  • 2 For a representative review on gold-catalyzed glycosylation, see: Yu B. Sun J. Yang X. Acc. Chem. Res. 2011; 45: 1227

    • For selected references, see:
    • 3a Li Y. Yang X. Liu Y. Zhu C. Yang Y. Yu B. Chem. Eur. J. 2010; 16: 1871
    • 3b Zhu Y. Yu B. Angew. Chem., Int. Ed. 2011; 50: 8329
    • 3c Zhang Q. Sun J. Zhu Y. Zhang F. Yu B. Angew. Chem., Int. Ed. 2011; 50: 4933
  • 4 Yokoyama M. Carbohydr. Res. 2004; 327: 5

    • For selected references, see:
    • 5a Hashimoto S. Hayashi M. Noyori R. Tetrahedron Lett. 1984; 25: 1379
    • 5b Nicolaou KC. Chucholowski A. Dolle RE. Randall JL. J. Chem. Soc., Chem. Commun. 1984; 1155
    • 5c Manabe S. Ito Y. J. Org. Chem. 2013; 78: 4568
    • 6a Kim W.-S. Hosono S. Sasai H. Shibasaki M. Tetrahedron Lett. 1995; 36: 4443
    • 6b Mukaiyama T. Maeshima H. Jona H. Chem. Lett. 2001; 30: 388
  • 7 Shen Z.-L. Wang S.-Y. Chok Y.-K. Xu Y.-H. Loh T.-P. Chem. Rev. 2013; 113: 271
  • 8 Ma T., Li C., Liang H., Yu L., Xue W.; Synlett; in press
  • 9 Jansson K. Ahlfors S. Frejd T. Kihlberg J. Magnusson G. Dahmén J. Noori G. Stenvall K. J. Org. Chem. 1988; 53: 5629
  • 10 For a selected review, see: Kolb HC. Finn MG. Sharpless KB. Angew. Chem., Int. Ed. 2001; 40: 2004
  • 11 Thirumurugan P. Matosiuk D. Jozwiak K. Chem. Rev. 2013; 113: 4905
    • 12a Deshpande PP. Danishefsky SJ. Nature 1997; 387: 164
    • 12b Kim YJ. Wang P. Navarro-Villalobos M. Rohde BD. Derryberry J. Gin DY. J. Am. Chem. Soc. 2006; 128: 11906
    • 12c Galonić DP. Gin DY. Nature 2007; 446: 1000
    • 12d Islam M. Tirukoti ND. Nandi S. Hotha S. J. Org. Chem. 2014; 79: 4470
  • 13 (2-Trimethylsilyl)ethyl 2-O-Benzoyl-3,4,6-tri-O-Benzyl-β-d-glucopyranoside; Typical Procedure 2-(Trimethylsilyl)ethanol (0.12 mmol) was added to a solution of glucopyranosyl fluoride G (56 mg, 0.1 mmol) in anhyd CH2Cl2 (2 mL) containing InI3 (5 mg, 0.01mmol), and the mixture was stirred for 2 h at r.t. When the reaction was complete (TLC), the mixture was concentrated under reduced pressure and the resulting residue was purified by flash chromatograph [silica gel, PE–EtOAc (4:1)] to give a colorless oil; yield: 52 mg (98%). 1H NMR (400 MHz, CDCl3): δ = 8.02 (d, J = 7.2 Hz, 2 H), 7.56 (t, J = 7.2 Hz, 1 H), 7.43 (t, J = 7.6 Hz, 2 H), 7.38–7.26 (m, 8 H), 7.21–7.18 (m, 2 H), 7.12 (s, 5 H), 5.30–5.23 (m, 1 H), 4.82 (d, J = 10.8 Hz, 1 H), 4.73 (d, J = 11.2 Hz, 1 H), 4.66 (d, J = 2.4 Hz, 1 H), 4.63 (d, J = 3.6 Hz, 1 H), 4.59 (d, J = 2.8 Hz, 1 H), 4.58–4.51 (m, 2 H), 3.99 (dd, J = 10.0, 5.6 Hz, 1 H), 3.85–3.70 (m, 4 H), 3.59–3.48 (m, 2 H), 0.85 (td, J = 14.0, 12.0, 6.4 Hz, 2 H), –0.09 (s, 9 H). 13C NMR (100 MHz, CDCl3): δ = 165.1, 138.1, 137.9, 137.8, 132.9, 130.2, 129.8, 128.4, 128.4, 128.3, 128.2, 128.0, 128.0, 127.8, 127.7, 127.6, 100.6, 82.9, 78.1, 75.2, 75.0, 73.9, 73.5, 68.9, 67.1, 18.0, –1.5. HRMS (ESI): m/z [M + H]+ calcd for C39H47O7Si: 655.3091; found: 655.3092.