Synthesis 2018; 50(03): 676-684
DOI: 10.1055/s-0036-1589127
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Monofunctionalized Calix[5]arenes

Björn Ingenfeld
Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany   Email: arne.luetzen@uni-bonn.de
,
Steffen Straub
Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany   Email: arne.luetzen@uni-bonn.de
,
Christopher Frömbgen
Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany   Email: arne.luetzen@uni-bonn.de
,
Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie, Gerhard-Domagk-Str. 1, 53121 Bonn, Germany   Email: arne.luetzen@uni-bonn.de
› Author Affiliations
Further Information

Publication History

Received: 31 August 2017

Accepted after revision: 02 October 2017

Publication Date:
08 November 2017 (online)


Abstract

Seven OH-free and O-permethylated monofunctionalized calix[5]arenes carrying either additional methyl or tert-butyl groups are prepared following fragment condensation protocols. This strategy proves to be superior to previous approaches. Calix[5]arenes with free OH groups all adopt a cone conformation stabilized by a seam of hydrogen bonds at the lower rim. Post-condensation modifications, i.e., methylation of phenolic OH groups or functional group interconversions can also be achieved. Bulky tert-butyl groups are also found to stabilize the cone conformations of O-methylated compounds. These compounds offer versatile functional groups that make these concave molecules interesting building blocks for the synthesis of more sophisticated molecular architectures.

Supporting Information

 
  • References

    • 1a Diederich F. Stang P.-J. Tykwinski R.-R. Modern Supramolecular Chemistry . Wiley-VCH; Weinheim: 2008
    • 1b Brinker UH. Mieusset J.-L. Molecular Encapsulation . John Wiley & Sons; Chichester: 2010
    • 2a Dodziuk H. Cyclodextrins and Their Complexes . Wiley-VCH; Weinheim: 2006
    • 2b Jin Z.-Y. Cyclodextrin Chemistry . World Scientific; Singapore: 2013
    • 2c Sliwa W. Girek T. Cyclodextrins . Wiley-VCH; Weinheim: 2017
  • 3 Sliwa W. Kozlowski C. Calixarenes and Resorcinarenes . Wiley-VCH; Weinheim: 2009
    • 4a Mandolini L. Ungaro R. Calixarenes in Action . World Scientific; Singapore: 2000
    • 4b Gutsche CD. Calixarenes: An Introduction . In Monographs in Supramolecular Chemistry . Stoddard JF. RSC Publishing; Cambridge: 2008
    • 4c Neri P. Sessler JL. Wang M. Calixarenes and Beyond . Springer; Switzerland: 2016
    • 5a Izatt RM. Christensen JJ. Hawkins RT. US Patent 4477377 A, 1984 ; Chem. Abstr. 1984, 101, 218333
    • 5b Arnaud-Neu F. Arnecke R. Böhmer V. Fanni S. Gordon JL. M. Schwing-Weil M.-J. Vogt W. J. Chem. Soc., Perkin Trans. 2 1996; 1855
    • 6a Ferguson G. Notti A. Pappalardo S. Parisi MF. Spek AL. Tetrahedron Lett. 1998; 39: 1965
    • 6b Choe J.-I. Bull. Kor. Chem. Soc. 2003; 24: 75
    • 6c Ballistreri FP. Notti A. Pappalardo S. Parisi MF. Spek AL. Org. Lett. 2003; 5: 1071
    • 6d Garozzo D. Gattuso G. Notti A. Pappalardo A. Pappalardo S. Parisi MF. Perez M. Pisagatti I. Angew. Chem. Int. Ed. 2005; 44: 4892
    • 6e Lupo F. Capici C. Gattuso G. Notti A. Parisi MF. Pappalardo A. Pappalardo S. Gulino A. Chem. Mater. 2010; 22: 2829
    • 7a Haino T. Yanase M. Kukazawa Y. Angew. Chem. Int. Ed. 1997; 36: 259
    • 7b Haino T. Yamanaka Y. Araki H. Fukazawa Y. Chem. Commun. 2002; 402
    • 7c Atwood JL. Barbour LJ. Heavan MW. Raston CL. Angew. Chem. Int. Ed. 2003; 42: 3254
    • 7d Haino T. Kobayashi M. Chikaraishi M. Fukazawa Y. Chem. Commun. 2005; 2321
    • 7e Haino T. Fukunaga C. Fukazawa Y. Org. Lett. 2006; 8: 3545
    • 8a Shinkai S. Sugasaki A. Ikeda M. Takeuchi M. Acc. Chem. Res. 2001; 34: 494
    • 8b Kovbasyuk L. Krämer R. Chem. Rev. 2004; 104: 3161
    • 8c Kremer C. Lützen A. Chem. Eur. J. 2013; 19: 6162
    • 9a Lützen A. Haß O. Bruhn T. Tetrahedron Lett. 2002; 43: 1807
    • 9b Hass O. Schierholt A. Jordan M. Lützen A. Synthesis 2006; 519
    • 9c Zahn S. Reckien W. Staats H. Matthey J. Lützen A. Kirchner B. Chem. Eur. J. 2009; 15: 2572
    • 9d Staats H. Eggers F. Haß O. Fahrenkrug F. Matthey J. Lüning U. Lützen A. Eur. J. Org. Chem. 2009; 4777
    • 9e Staats H. Lützen A. Beilstein J. Org. Chem. 2010; 6: No. 10
    • 9f Kremer C. Schnakenburg G. Lützen A. Beilstein J. Org. Chem. 2014; 10: 814
    • 9g Kremer C. Lützen A. Chem. Eur. J. 2014; 20: 8852
    • 10a Böhmer V. Angew. Chem. Int. Ed. 1995; 34: 713
    • 10b Pappalardo S. Ferguson F. J. Org. Chem. 1996; 61: 2407
    • 11a Arnaud-Neu F. Fuangswasdi S. Notti A. Pappalardo S. Parisi MF. Angew. Chem. Int. Ed. 1998; 37: 112
    • 11b Yanase M. Haino T. Fukazawa Y. Tetrahedron Lett. 1999; 40: 2781
    • 11c Haino T. Araki H. Yamanaka Y. Fukazawa Y. Tetrahedron Lett. 2001; 42: 3203
  • 12 Kämmerer H. Happel G. Mathiasch B. Makromol. Chem. 1981; 182: 1685
    • 13a Böhmer V. Chhim P. Kämmerer H. Makromol. Chem. 1979; 180: 2503
    • 13b Haino T. Harano T. Matsumura K. Fukazawa Y. Tetrahedron Lett. 1995; 36: 5793
    • 13c No K. Kwon KM. Synthesis 1996; 1293
    • 13d Biali SE. Böhmer V. Columbis I. Ferguson G. Grüttner C. Grynszpan F. Paulus EF. Thondorf I. J. Chem. Soc., Perkin Trans. 2 1998; 2261
  • 14 Gutsche CD, Iqbal M. Org. Synth. 1990; 68: 234
  • 15 Gutsche CD, Dhawan B, Leonis M, Stewart D. Org. Synth. 1990; 68: 238
  • 16 Bew SP. Sharma SV. Chem. Commun. 2007; 975
  • 17 Knop A. Böhmer V. Pilato LA. Phenol–Formaldehyde Polymers . In Comprehensive Polymer Science. . Vol 5. Eastmond GC. Ledwith A. Russo S. Sigwalt P. Pergamon Press; Oxford: 1989: 611
  • 18 Asfari Z. Vicens J. Makromol. Chem. Rapid Commun. 1989; 10: 181
  • 19 Davis AC. Hayes BT. Hunter RF. J. Appl. Chem. 1953; 3: 312
  • 20 Knight PD. O’Shaughnessy PN. Munslow IJ. Kimberley BS. Scott P. J. Organomet. Chem. 2003; 683: 103
  • 21 Wong Y.-L. Tong L. Dilworth J. Ng DK. P. Lee H. Dalton Trans. 2010; 39: 4602
  • 22 Hagenau U. Hek J. Kaminsky W. Schauwienold A.-M. Z. Anorg. Allg. Chem. 2000; 626: 1814
  • 23 Lindoy LF. Meehan GV. Svenstrup N. Synthesis 1998; 1029
  • 24 Hrynielwicka A. Kozlowska A. Witkowski S. J. Organomet. Chem. 2012; 701: 87
  • 25 Routasalo T. Helaja J. Kavakka J. Koskinen AM. P. Eur. J. Org. Chem. 2008; 3190
  • 26 In principle, one can also use other high-boiling hydrocarbons like xylene, mesitylene, decalin, or tetralin as solvents for the fragment condensation. However, we obtained higher yields in toluene compared to xylene.
  • 27 MS/MS experiments revealed that, indeed, a calix[10]arene is formed rather than a catenane composed of two mechanically interlocked calix[5]arenes.
  • 28 Wang J. Gutsche CD. J. Org. Chem. 2002; 67: 4423
  • 29 Moon NG. Harned AM. Org. Lett. 2015; 17: 2218
  • 30 Young JA. Karmakar S. Jacobs HK. Gopalan AS. Tetrahedron 2012; 68: 10030
  • 31 Kim S.-y, No K. Bull. Kor. Chem. Soc. 2007; 28: 315
  • 32 Leroy J. Wakselman C. Lacroix P. Kahn O. J. Fluorine Chem. 1988; 40: 23
  • 33 de Mendoza J. Nieto PM. Prados P. Sánchez C. Tetrahedron 1990; 46: 671
  • 34 Kitschke P. Walter M. Rüffer T. Seifert A. Speck F. Seyller T. Spange S. Lang H. Auer AA. Kovalenko MV. Mehring M. J. Mater. Chem. A 2016; 4: 2705
  • 35 Kämmerer H. Pachta J. Ritz J. Makromol. Chem. 1977; 178: 1229
  • 36 Barba V. Ramos P. Jiménez D. Rivera A. Meneses A. Inorg. Chim. Acta 2013; 401: 30
  • 37 Haino T. Matsumura K. Harano T. Xamada K. Saijyo Y. Fukazawa Y. Tetrahedron 1998; 54: 12185