Synlett 2018; 29(05): 597-602
DOI: 10.1055/s-0036-1589139
letter
© Georg Thieme Verlag Stuttgart · New York

Mild and Direct C–H Arylation of Quinoxalin-2(1H)-ones with Aryldiazonium Salts under Metal-Free Conditions

Kun Yin
a   School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
,
a   School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China
b   Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. of China   Email: rhzhang@tongji.edu.cn
› Author Affiliations
Financial support from the National Nature Science Foundation of China (20972113/B020502) is gratefully acknowledged.
Further Information

Publication History

Received: 12 September 2017

Accepted after revision: 29 October 2017

Publication Date:
11 December 2017 (online)


Abstract

A mild and direct C–H arylation of quinoxazolin-2(1H)-ones with aryldiazonium salts has been developed. A wide variety of 3-arylquinoxazolin-2(1H)-ones were synthesized in up to 92% yield at room temperature under metal-free conditions. This strategy tolerates a wide range of functional groups and shows environmental friendliness and practicality.

Supporting Information

 
  • References and Notes

    • 1a Yamaguchi J. Yamaguchi AD. Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960 ; and references cited therein
    • 1b Welsch ME. Snyder SA. Stockwell BR. Curr. Opin. Chem. Biol. 2010; 14: 347 ; and references cited therein
    • 1c Le Douaron G. Ferrié L. Sepulveda-Diaz JE. Amar M. Harfouche A. Séon-Méniel B. Raisman-Vozari R. Michel PP. Figadère B. J. Med. Chem. 2016; 59: 6169
    • 1d Alexandre F.-R. Amador A. Bot S. Caillet C. Convard T. Jakubik J. Musiu C. Poddesu B. Vargiu L. Liuzzi M. Roland A. Seifer M. Standring D. Storer R. Dousson CB. J. Med. Chem. 2011; 54: 392
    • 1e Cernak T. Dykstra KD. Tyagarajan S. Vachal P. Krska SW. Chem. Soc. Rev. 2016; 45: 546 ; and references cited therein
    • 1f Colon M. Fitch DM. WO 2009073497, 2009
    • 1g Schmidt F. Figadère B. Vozari RS. Champy P. Franck X. WO 2010007179, 2010
    • 1h Baumann M. Baxendale IR. Beilstein J. Org. Chem. 2013; 9: 2265
    • 2a Weïwer M. Spoonamore J. Wei J. Guichard B. Ross NT. Masson K. Silkworth W. Dandapani S. Palmer M. Scherer CA. Stern AM. Schreiber SL. Munoz B. ACS Med. Chem. Lett. 2012; 3: 1034
    • 2b Kawanishi N. Sugimoto T. Shibata J. Nakamura K. Masutani K. Ikuta M. Hirai H. Bioorg. Med. Chem. Lett. 2006; 16: 5122
    • 2c Koltun DO. Parkhill EQ. Vasilevich NI. Glushkov AI. Zilbershtein TM. Ivanov AV. Cole AG. Henderson I. Zautke NA. Brunn SA. Mollova N. Leung K. Chisholm JW. Zablocki J. Bioorg. Med. Chem. Lett. 2009; 19: 2048
    • 3a Quinn J. Guo C. Ko L. Sun B. He Y. Li Y. RSC Adv. 2016; 6: 22043
    • 3b Kaafarani BR. Kondo T. Yu J. Zhang Q. Dattilo D. Risko C. Jones SC. Barlow S. Domercq B. Amy F. Kahn A. Brédas J.-L. Kippelen B. Marder SR. J. Am. Chem. Soc. 2005; 127: 16358
    • 3c Ishi-i T. Yaguma K. Kuwahara R. Taguri Y. Mataka S. Org. Lett. 2006; 8: 585
    • 3d Zhao Q. Li R.-F. Xing S.-K. Liu X.-M. Hu T.-L. Bu X.-H. Inorg. Chem. 2011; 50: 10041
    • 3e Peng C. Ning G.-H. Su J. Zhong G. Tang W. Tian B. Su C. Yu D. Zu L. Yang J. Ng M.-F. Hu Y.-S. Yang Y. Armand M. Loh KP. Nat. Energy 2017; 2: 17074
    • 4a Xu Z. Dietrich AY. S. Cappelli AP. Nichol G. Hulme C. Mol. Diversity 2012; 16: 73
    • 4b Xue Z.-Y. Jiang Y. Peng X.-Z. Yuan W.-C. Zhang X.-M. Adv. Synth. Catal. 2010; 352: 2132
    • 4c Shaw AY. Denning CR. Hulme C. Synthesis 2013; 45: 459
    • 5a Hussain S. Parveen S. Hao X. Zhang S. Wang W. Qin X. Yang Y. Chen X. Zhu S. Zhu C. Ma B. Eur. J. Med. Chem. 2014; 80: 383
    • 5b Qin X. Hao X. Han H. Zhu S. Yang Y. Wu B. Hussain S. Parveen S. Jing C. Ma B. Zhu C. J. Med. Chem. 2015; 58: 1254
    • 5c Carrër A. Brion J.-D. Messaoudi S. Alami M. Org. Lett. 2013; 15: 5606
  • 6 Sagadevan A. Ragupathi A. Hwang KC. Photochem. Photobiol. Sci. 2013; 12: 2110

    • For C(sp2)–H arylation, see:
    • 7a Ackermann L. Vicente R. Kapdi AR. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 7b Yi H. Zhang G. Wang H. Huang Z. Wang J. Singh AK. Lei A. Chem. Rev. 2017; 117: 9016
    • 7c Alberico D. Scott ME. Lautens M. Chem. Rev. 2007; 107: 174
    • 7d Bellina F. Rossi R. Tetrahedron 2009; 65: 10269
    • 7e Chen C. Chen X. Zhao H. Jiang H. Zhang M. Org. Lett. 2017; 19: 3390
    • 7f Reay AJ. Hammarback LA. Bray JT. W. Sheridan T. Turnbull D. Whitwood AC. Fairlamb IJ. S. ACS Catal. 2017; 7: 5174
    • 7g Yang Y. Lan J. You J. Chem. Rev. 2017; 117: 8787
    • 7h Utepova IA. Trestsova MA. Chupakhin ON. Charushin VN. Rempel AA. Green Chem. 2015; 17: 4401
    • 7i Chen X. Cui X. Yang F. Wu Y. Org. Lett. 2015; 17: 1445
    • 7j Han Y.-Y. Wu Z.-J. Zhang X.-M. Yuan W.-C. Tetrahedron Lett. 2010; 51: 2023
    • 7k Zhao S. Yuan J. Li Y.-C. Shi B.-F. Chem. Commun. 2015; 51: 12823
    • 7l Liu B. Zhang Z.-Z. Li X. Shi B.-F. Org. Chem. Front. 2016; 3: 897
    • 7m Zhan B.-B. Liu Y.-H. Shi B.-F. Chem. Commun. 2016; 52: 4934
    • 7n Liu B. Huang Y. Lan J. Song F. You J. Chem. Sci. 2013; 4: 2163
    • 7o She Z. Shi Y. Huang Y. Cheng Y. Song F. You J. Chem. Commun. 2014; 50: 13914
    • 7p Sun D. Li B. Lan J. Huang Q. You J. Chem. Commun. 2016; 52: 3635
    • 7q Qin D. Wang J. Qin X. Wang C. Gao G. You J. Chem. Commun. 2015; 51: 6190
    • 8a Yin K. Zhang R. Org. Lett. 2017; 19: 1530
    • 8b Paul S. Ha JH. Park GE. Lee YR. Adv. Synth. Catal. 2017; 359: 1515
    • 9a Hari DP. König B. Angew. Chem. Int. Ed. 2013; 52: 4734
    • 9b Sahoo MK. Midya SP. Landge VG. Balaraman E. Green Chem. 2017; 19: 2111
    • 9c Gauchot V. Sutherland DR. Lee A.-L. Chem. Sci. 2017; 8: 2885
    • 9d Gauchot V. Lee A.-L. Chem. Commun. 2016; 52: 10163
    • 9e Cornilleau T. Hermange P. Fouquet E. Chem. Commun. 2016; 52: 10040
    • 9f Qu C. Zhang S. Du H. Zhu C. Chem. Commun. 2016; 52: 14400
    • 9g Jiang J. Zhang W.-M. Dai J.-J. Xu J. Xu H.-J. J. Org. Chem. 2017; 82: 3622
    • 9h Kalyani D. McMurtrey KB. Neufeldt SR. Sanford MS. J. Am. Chem. Soc. 2011; 133: 18566
    • 9i Zhang J. Chen J. Zhang X. Lei X. J. Org. Chem. 2014; 79: 10682
    • 9j Kwon SJ. Kim DY. Org. Lett. 2016; 18: 4562
    • 9k Kim S. Rojas-Martin J. Toste FD. Chem. Sci. 2016; 7: 85
    • 9l Tlahuext-Aca A. Hopkinson MN. Sahoo B. Glorius F. Chem. Sci. 2016; 7: 89
    • 9m Wang Z.-S. Tan T.-De. Wang C.-M. Yuan D.-Q. Zhang T. Zhu P. Zhu C. Zhou J.-M. Wang L. Ye W. Chem. Commun. 2017; 53: 6848
    • 9n Liang L. Xie M.-S. Wang H.-X. Niu H.-Y. Qu G.-R. Guo H.-M. J. Org. Chem. 2017; 82: 5966
    • 9o Ghosh I. Marzo L. Das A. Shaikh R. König B. Acc. Chem. Res. 2016; 49: 1566
    • 10a Zhang N. Quan Z.-J. Zhang Z. Da Y.-X. Wang X.-C. Chem. Commun. 2016; 52: 14234
    • 10b Hari DP. Schroll P. König B. J. Am. Chem. Soc. 2012; 134: 2958
    • 10c Maity P. Kundu D. Ranu BC. Eur. J. Org. Chem. 2015; 1727
    • 10d Hari DP. Hering T. König B. Org. Lett. 2012; 14: 5334
    • 10e Xiao T. Dong X. Tang Y. Zhou L. Adv. Synth. Catal. 2012; 354: 3195
    • 10f Gu L. Jin C. Liu J. Green Chem. 2015; 17: 3733
    • 10g Guo W. Lu L.-Q. Wang Y. Wang Y.-N. Chen J.-R. Xiao W.-J. Angew. Chem. Int. Ed. 2015; 54: 2265
    • 10h Yu J. Zhang L. Yan G. Adv. Synth. Catal. 2012; 354: 2625
    • 10i Kundu D. Ahammed S. Ranu BC. Org. Lett. 2014; 16: 1814
    • 10j Zoller J. Fabry DC. Rueping M. ACS Catal. 2015; 5: 3900
    • 10k Morimoto N. Morioku K. Suzuki H. Nakaid Y. Nishina Y. Chem. Commun. 2017; 53: 7226
    • 10l Hartmann M. Daniliuc CG. Studer A. Chem. Commun. 2015; 51: 3121
    • 10m Zhang Y.-P. Feng X.-L. Yang Y.-S. Cao B.-X. Tetrahedron Lett. 2016; 57: 2298
    • 11a Mo F. Dong G. Zhang Y. Wang J. Org. Biomol. Chem. 2013; 11: 1582
    • 11b Bonin H. Delbrayelle D. Demonchaux P. Gras E. Chem. Commun. 2010; 46: 2677
    • 11c Gemoets HP. L. Kalvet I. Nyuchev AV. Erdmann N. Hessel V. Schoenebeck F. Nöel T. Chem. Sci. 2017; 8: 1046
    • 11d Liu T. Zheng D. Wu J. Org. Chem. Front. 2017; 4: 1079
    • 11e Zhou K. Xia H. Wu J. Org. Chem. Front. 2017; 4: 1121
    • 11f An Y. Zhang J. Xia H. Wu J. Org. Chem. Front. 2017; 4: 1318
    • 11g Yu J. Mao R. Wang Q. Wu J. Org. Chem. Front. 2017; 4: 617
    • 11h Mao R. Yuan Z. Zhang R. Ding Y. Fan X. Wu J. Org. Chem. Front. 2016; 3: 1498
    • 11i Luo Y. Pan X. Chen C. Yao L. Wu J. Chem. Commun. 2015; 51: 180
    • 11j Yuan J.-W. Liu S.-N. Qu L.-B. Tetrahedron 2017; 73: 2267
    • 11k Kojima M. Oisaki K. Kanai M. Chem. Commun. 2015; 51: 9718
    • 12a Hantzsch A. Jochem E. Ber. Dtsch. Chem. Ges. 1901; 34: 3337
    • 12b Hantzsch A. Vock R. Ber. Dtsch. Chem. Ges. 1903; 36: 2061
  • 13 1-Methyl-3-(4-phenoxyphenyl)quinoxalin-2(1H)-one (3h); Typical Procedure A 25 mL round bottle was charged with 4-phenoxyaniline (4.0 equiv) and anhyd MeCN (1.0 mL). t-BuONO (6.0 equiv) was added dropwise from a syringe cooled in an ice bath, and the syringe was then rinsed through with MeCN (2 × 0.5 mL). When the addition was complete, the mixture was warmed to r.t. and stirred for 0.5 h to form 4-PhOC6H4N=NOBu-t in situ. The mixture was then transferred to an oven-dried 25 mL Schlenk tube containing 1-methylquinoxalin-2(1H)-one (1a; 0.3 mmol, 1.0 equiv). The bottle was rinsed with MeCN (2 × 0.5 mL), which was also transferred into the Schlenk tube. The atmosphere in the Schlenk tube was then exchanged adequately by N2 and the mixture was stirred for 48 h at r.t. The final mixture was diluted with EtOAc and filtered through a pad of silica gel. The filtrate was concentrated under reduced pressure and the residue was purified by TLC [self-prepared silica gel plates, PE­–EtOAc (20:1 to 10:1)] to give an orange solid; yield: 70 mg (71%); mp 102–104 °C. 1H NMR (400 MHz, CDCl3): δ = 8.40–8.33 (m, 2 H), 7.93 (dd, J = 8.0, 1.6 Hz, 1 H), 7.60–7.53 (m, 1 H), 7.42–7.31 (m, 4 H), 7.15 (t, J = 7.4 Hz, 1 H), 7.11–7.07 (m, 4 H), 3.78 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 159.50, 156.56, 154.80, 153.16, 133.27, 133.16, 131.56, 130.97, 130.32, 130.14, 129.92, 123.88, 123.80, 119.61, 117.89, 113.64, 29.37. HRMS (ESI): m/z [M + H]+ calcd for C21H17N2O2: 329.1285; found: 329.1276.
    • 14a Abramovitch RA. Saha JG. Tetrahedron 1965; 21: 3297
    • 14b Gurczynski M. Tomasik P. Org. Prep. Proced. Int. 1991; 23: 438
  • 15 CCDC 1560266 contains the supplementary crystallographic data for compound 3h. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.