Synthesis 2018; 50(04): 700-710
DOI: 10.1055/s-0036-1589165
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Progress in Palladium-Catalyzed Cascade Cyclizations for Natural Product Synthesis

Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan   Email: hohno@pharm.kyoto-u.ac.jp
,
Shinsuke Inuki
Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan   Email: hohno@pharm.kyoto-u.ac.jp
› Author Affiliations
This work was supported by JSPS KAKENHI (Grant Nos. JP15KT0061 and JP17H03971), the Platform Project for Supporting Drug Discovery and Life Science Research from Japan Agency for Medical Research and Development (AMED), and the Hoansha Foundation.
Further Information

Publication History

Received: 14 November 2017

Accepted after revision: 06 December 2017

Publication Date:
22 January 2018 (online)


Abstract

Cascade reactions (also represented as domino reactions) realize the step-economical direct construction of natural product core structures. The use of atom-economical elementary reactions in cascade processes can minimize waste production and avoid prefunctionalization of the substrates. Palladium catalysis, which promotes a variety of atom-economical elementary reactions, has long been used as a powerful approach to the direct formation of complex heterocycles. In this short review, palladium-catalyzed cascade reactions for the construction of core structures of natural products reported in the last decade­ are highlighted.

1 Introduction

2 Reactions Terminated with Heteronucleophiles

2.1 Termination with Nitrogen Nucleophiles

2.2 Termination with Oxygen Nucleophiles

3 Reactions Terminated with Carbon Functional Groups

3.1 Termination with Carbon Nucleophiles

3.2 Termination with Heck-Type Reactions

4 Conclusion

 
  • References

  • 2 Wender PA. Verma VA. Paxton TJ. Pillow TH. Acc. Chem. Res. 2008; 41: 40
    • 3a Nicolaou KC. Sorensen EJ. Classics in Total Synthesis 1 . Wiley-VCH; Weinheim: 1996: 641-653
    • 3b Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167
    • 3c Smith JM. Moreno J. Boal BW. Garg NK. Angew. Chem. Int. Ed. 2015; 54: 400
    • 3d Ardkhean R. Caputo DF. J. Morrow SM. Shi H. Xiong Y. Anderson EA. Chem. Soc. Rev. 2016; 45: 1557
    • 4a Tietze LF. Chem. Rev. 1996; 96: 115
    • 4b Nicolaou KC. Montagnon T. Snyder SA. Chem. Commun. 2003; 551
    • 4c Müller T. Metal Catalyzed Cascade Reactions . In Topics in Organometallic Chemistry . Vol. 19. Müller T. Springer; Heidelberg: 2006: 149-205
    • 4d Kirsch SF. Synthesis 2008; 3183
    • 4e Lu L.-Q. Chen J.-R. Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
    • 4f Pellissier H. Chem. Rev. 2013; 113: 442
    • 4g Luo Y. Pan X. Yu X. Wu J. Chem. Soc. Rev. 2014; 43: 834
    • 4h Liao Q. Yang X. Xi C. J. Org. Chem. 2014; 79: 8507
    • 5a Trost BM. Angew. Chem. Int. Ed. 1995; 34: 259
    • 5b Trost BM. Acc. Chem. Res. 2002; 35: 695
    • 5c Li C.-J. Trost BM. Proc. Natl. Acad. Sci. U.S.A. 2008; 105: 13197
    • 6a Negishi E. Copéret C. Ma S. Liou S.-Y. Liu F. Chem. Rev. 1996; 96: 365
    • 6b Grigg R. Sridharan V. J. Organomet. Chem. 1999; 576: 65
    • 6c Ohno H. Asian J. Org. Chem. 2013; 2: 18
    • 6d Phillips D. France DJ. Asian J. Org. Chem. 2017; 6: 27
  • 7 Tsuji J. Tetrahedron 2015; 71: 6330
  • 8 Zeni G. Larock RC. Chem. Rev. 2006; 106: 4644
    • 9a Yamamoto Y. Radhakrishnan U. Chem. Soc. Rev. 1999; 28: 199
    • 9b Zeni G. Larock RC. Chem. Rev. 2004; 104: 2285
  • 10 For a recent review on carbopalladation cascades, see: Defert A. Werz DB. Chem. Eur. J. 2016; 22: 16718
  • 11 Grigg R. Sridharan V. Tetrahedron Lett. 1993; 34: 7471

    • For related reviews, see:
    • 12a Majumdar KC. Sinha B. Synthesis 2013; 45: 1271
    • 12b Ardkhean R. Caputo DF. J. Morrow SM. Shi H. Xiong Y. Anderson EA. Chem. Soc. Rev. 2016; 45: 1557
  • 13 For a recent review, see: Liu H. Jia Y. Nat. Prod. Rep. 2017; 34: 411
    • 14a Inuki S. Iwata A. Oishi S. Fujii N. Ohno H. J. Org. Chem. 2011; 76: 2072

    • See also:
    • 14b Inuki S. Oishi S. Fujii N. Ohno H. Org. Lett. 2008; 10: 5239
    • 14c Iwata A. Inuki S. Oishi S. Fujii N. Ohno H. J. Org. Chem. 2011; 76: 5506
  • 15 Liu H. Zhang X. Shan D. Pitchakuntla M. Ma Y. Jia Y. Org. Lett. 2017; 19: 3323
  • 16 Kamisaki H. Nanjo T. Tsukano C. Takemoto Y. Chem. Eur. J. 2011; 17: 626
  • 17 Trost BM. Dong G. Chem. Eur. J. 2009; 15: 6910
  • 18 Neog K. Borah A. Gogoi P. J. Org. Chem. 2016; 81: 11971
  • 19 Hayes PY. Chow S. Rahm F. Bernhardt PV. De Voss JJ. Kitching W. J. Org. Chem. 2010; 75: 6489
  • 20 This type of cascade reaction was first reported by Semmelhack and co-workers: Semmelhack MF. Bodurow C. Baum M. Tetrahedron Lett. 1984; 25: 3171
    • 21a Inuki S. Yoshimitsu Y. Oishi S. Fujii N. Ohno H. Org. Lett. 2009; 11: 4478

    • See also:
    • 21b Inuki S. Yoshimitsu Y. Oishi S. Fujii N. Ohno H. J. Org. Chem. 2010; 75: 3831
    • 22a Ohno H. Hamaguchi H. Ohata M. Tanaka T. Angew. Chem. Int. Ed. 2003; 42: 1749
    • 22b Ohno H. Hamaguchi H. Ohata M. Kosaka S. Tanaka T. J. Am. Chem. Soc. 2004; 126: 8744
  • 23 Werness JB. Tang W. Org. Lett. 2011; 13: 3664
  • 24 Davis DC. Walker KL. Hu C. Zare RN. Waymouth RM. Dai M. J. Am. Chem. Soc. 2016; 138: 10693
    • 25a Pinto A. Jia Y. Neuville L. Zhu J. Chem. Eur. J. 2007; 13: 961

    • For total synthesis of (±)-horsfiline based on the same strategy, see:
    • 25b Jaegli S. Vors J.-P. Neuville L. Zhu J. Synlett 2009; 2997
  • 26 Rao ML. N. Murty VN. Eur. J. Org. Chem. 2016; 2177
  • 27 Yang M. Yang X. Sun H. Li A. Angew. Chem. Int. Ed. 2016; 55: 2851
  • 28 Kaliyaperumal SA. Banerjee S. Syam Kumar UK. Org. Biomol. Chem. 2014; 12: 6105
  • 29 Tietze LF. Stecker F. Zinngrebe J. Sommer KM. Chem. Eur. J. 2006; 12: 8770
  • 30 Hu P. Snyder SA. J. Am. Chem. Soc. 2017; 139: 5007
    • 31a Goh SS. Chaubet G. Gockel B. Cordonnier M.-CA. Baars H. Phillips AW. Anderson EA. Angew. Chem. Int. Ed. 2015; 54: 12618
    • 31b Gockel B. Goh SS. Puttock EJ. Baars H. Chaubet G. Anderson EA. Org. Lett. 2014; 16: 4480
  • 32 Tietze LF. Kahle K. Raschke T. Chem. Eur. J. 2002; 8: 401
  • 33 Tietze LF. Duefert S.-C. Clerc J. Bischoff M. Maaß C. Stalke D. Angew. Chem. Int. Ed. 2013; 52: 3191
  • 34 Milde B. Pawliczek M. Jones PG. Werz DB. Org. Lett. 2017; 19: 1914
  • 35 Pawliczek M. Schneider TF. Maaß C. Stalke D. Werz DB. Angew. Chem. Int. Ed. 2015; 54: 4119