Synthesis 2017; 49(02): 319-325
DOI: 10.1055/s-0036-1589408
paper
© Georg Thieme Verlag Stuttgart · New York

Concentration Effect in the Asymmetric Michael Addition of Acetone to β-Nitrostyrenes Catalyzed by Primary Amine Thioureas

Z. Inci Günler
a   Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain   Email: ciril.jimeno@iqac.csic.es
,
Ignacio Alfonso
a   Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain   Email: ciril.jimeno@iqac.csic.es
,
Ciril Jimeno*
a   Department of Biological Chemistry and Molecular Modelling, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain   Email: ciril.jimeno@iqac.csic.es
,
Miquel A. Pericàs*
b   Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
c   Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028 Barcelona, Spain   Email: mpericas@iciq.es
› Author Affiliations
Further Information

Publication History

Received: 28 September 2016

Accepted after revision: 07 October 2016

Publication Date:
14 November 2016 (online)


Dedicated to Professor Dieter Enders on the occasion of his 70th birthday

Abstract

Bifunctional primary amine thiourea (PAT) organocatalysts show remarkable improvement in enantioselectivity and catalytic activity (turnover frequency) in the asymmetric Michael addition of acetone to β-nitrostyrenes upon dilution. Mechanistic investigations indicate that this behavior corresponds to the inhibition of off-cycle catalyst deactivation at low concentration, rather than to the operation of aggregation phenomena at high concentration. Reaction at low concentration (≤0.2 M in β-nitrostyrene) leads to the minimization of catalyst deactivation and, thus, to the optimization of yield and ee of the Michael­ addition products.

Supporting Information

 
  • References

    • 1a Tsogoeva SB, Wei SW. Chem. Commun. 2006; 1451
    • 1b Yalalov DA, Tsogoeva SB, Schmatz S. Adv. Synth. Catal. 2006; 348: 826
    • 2a Huang H, Jacobsen EN. J. Am. Chem. Soc. 2006; 128: 7170
    • 2b Lalonde MP, Chen Y, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 6366

      For reviews, see:
    • 3a Serdyuk OV, Heckel CM, Tsogoeva SB. Org. Biomol. Chem. 2013; 11: 7051
    • 3b Tsakos M, Kokotos CG. Tetrahedron 2013; 69: 10199
    • 3c Peng F, Shao Z. J. Mol. Catal. A: Chem. 2008; 285: 1

      For selected examples, see:
    • 4a Tsakos M, Kokotos CG, Kokotos G. Adv. Synth. Catal. 2012; 354: 740
    • 4b Kokotos CG, Kokotos G. Adv. Synth. Catal. 2009; 351: 1355
    • 4c Dudzinski K, Pakulska AM, Kwiatkowski P. Org. Lett. 2012; 14: 4222
    • 5a John RA. Biochim. Biophys. Acta 1995; 1248: 81
    • 5b Maegley KA, Admiraal SJ, Herschlag D. Proc. Natl. Acad. Sci. U.S.A. 1996; 93: 8160
    • 5c Jornvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J, Ghosh D. Biochemistry 1995; 34: 6003
    • 5d Shuman S, Schwer B. Mol. Microbiol. 1995; 17: 405
    • 5e Radominska-Pandya A, Czernik PJ, Little JM, Battaglia E, Mackenzie PI. Drug Metab. Rev. 1999; 31: 817
    • 5f Gefflaut T, Blonski C, Perie J, Willson M. Prog. Biophys. Mol. Biol. 1995; 63: 301
  • 6 Günler ZI, Companyó X, Alfonso I, Burés J, Jimeno C, Pericàs MA. Chem. Commun. 2016; 52: 6821

    • For recent examples, see:
    • 7a Serra-Pont A, Alfonso I, Jimeno C, Solà J. Chem. Commun. 2015; 51: 17386
    • 7b Kasaplar P, Ozkal E, Rodríguez-Escrich C, Pericàs MA. Green Chem. 2015; 17: 3122
    • 7c Sagamanova IK, Sayalero S, Martínez-Arranz S, Albéniz AC, Pericàs MA. Catal. Sci. Technol. 2015; 5: 754
    • 7d Jimeno C, Cao L, Renaud P. J. Org. Chem. 2016; 81: 1251
  • 8 Jimeno C. Org. Biomol. Chem. 2016; 14: 6147
  • 9 Zhang X.-J, Liu S.-P, Lao J.-H, Du G.-J, Yan M, Chan AS. C. Tetrahedron: Asymmetry 2009; 20: 1451
  • 10 Fuerst DE, Jacobsen EN. J. Am. Chem. Soc. 2005; 127: 8964
    • 11a Jang HB, Rho HS, Oh JS, Nam EH, Park SE, Bae HY, Song CE. Org. Biomol. Chem. 2010; 8: 3918
    • 11b Lee JW, Ryu TH, Oh JS, Bae HY, Jang HB, Song CE. Chem. Commun. 2009; 7224
    • 11c Oh J.-S, Lee J.-W, Ryu TH, Lee JH, Song CE. Org. Biomol. Chem. 2012; 10: 1052
    • 11d Oh SH, Rho HS, Lee JW, Lee JE, Youk SH, Chin J, Song CE. Angew. Chem. Int. Ed. 2008; 47: 7872
    • 11e Rho HS, Oh SH, Lee JW, Lee JY, Chin J, Song CE. Chem. Commun. 2008; 1208
  • 12 Retini M, Bergonzinia G, Melchiorre P. Chem. Commun. 2012; 48: 3336
  • 13 Rodríguez-Llansola F, Miravet JF, Escuder B. Chem. Eur. J. 2010; 16: 8480
    • 14a Okino T, Hoashi Y, Furukawa T, Xu XN, Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
    • 14b Takemoto Y. Chem. Pharm. Bull. 2010; 58: 593
    • 15a Ji Y, Blackmond DG. Catal. Sci. Technol. 2014; 4: 3505
    • 15b Burés J, Armstrong A, Blackmond DG. J. Am. Chem. Soc. 2011; 133: 8822
    • 16a Barbier V, Couty F, David OR. P. Eur. J. Org. Chem. 2015; 3679
    • 16b Berry RW. H, Mazza RJ. Polymer 1973; 14: 172
  • 17 Blackmond DG. Angew. Chem. Int. Ed. 2005; 44: 4302
  • 18 Simpson AJ, Lam HW. Org. Lett. 2013; 15: 2586
  • 19 Morris DJ, Partridge AS, Manville CV, Racys DT, Woodward G, Docherty G, Wills M. Tetrahedron Lett. 2010; 51: 209
  • 20 Xue F, Zhang S, Duan W, Wang W. Adv. Synth. Catal. 2008; 350: 2194
  • 21 Li P, Wang Y, Liang X, Ye J. Chem. Commun. 2008; 3302
  • 22 Gu Q, Guo X.-T, Wu X.-Y. Tetrahedron 2009; 65: 5265