Synthesis 2017; 49(09): 1905-1930
DOI: 10.1055/s-0036-1589483
review
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Arylation with Diaryliodonium Salts

Martín Fañanás-Mastral*
Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain   Email: martin.fananas@usc.es
› Author Affiliations
Further Information

Publication History

Received: 01 December 2016

Accepted after revision: 06 January 2017

Publication Date:
06 March 2017 (online)


Dedicated to the memory of Prof. José Barluenga

Abstract

The unique reactivity of diaryliodonium salts with copper complexes has been applied to a variety of synthetic organic transformations. These hypervalent iodine compounds have been used for diverse copper-catalyzed cross-coupling reactions including C–H functionalizations, enantioselective C–C bond formation, cascade reactions and different heteroatom arylation processes. This review provides a summary of recent developments on this topic and discusses both the synthetic utility and mechanisms of these transformations.

1 Introduction

2 Historical Background

3 Arylation of Carbon Nucleophiles

3.1 Arylation of Organometallic Compounds

3.2 Arylation of Heteroarenes

3.3 Arylation of Arenes

3.4 Arylation of Alkenes

3.5 Arylation of Alkynes

4 Nitrogen Arylation

4.1 Arylation of Acyclic Amine Derivatives

4.2 Arylation of Cyclic Amine Derivatives

4.3 Arylation of Nitriles

4.4 Arylation of Azides

5 Oxygen Arylation

6 Arylation of Other Heteroatoms

6.1 Fluorine Arylation

6.2 Sulfur Arylation

6.3 Phosphorus Arylation

6.4 Iodine Arylation

7 Summary and Conclusions

 
  • References

  • 1 Ackermann L. Modern Arylation Methods . Wiley-VCH; Weinheim: 2009
    • 2a Stang PJ, Zhdankin VV. Chem. Rev. 1996; 96: 1123
    • 2b Varvoglis A. Tetrahedron 1997; 53: 1179
    • 2c Zhdankin VV, Stang PJ. Chem. Rev. 2002; 102: 2523
    • 2d Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
    • 2e Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
    • 3a Hossain MD, Ikegami Y, Kitamura T. J. Org. Chem. 2006; 71: 9903
    • 3b Hossain MD, Kitamura T. Tetrahedron 2006; 62: 6955
    • 3c Bielawski M, Olofsson B. Chem. Commun. 2007; 2521
    • 3d Bielawski M, Zhu M, Olofsson B. Adv. Synth. Catal. 2007; 349: 2610
    • 4a Ochiai M, Toyonari M, Nagaoka T, Chen D.-W, Kida M. Tetrahedron Lett. 1997; 38: 6709
    • 4b Carroll MA, Pike VW, Widdowson DA. Tetrahedron Lett. 2000; 41: 5393
  • 5 Deprez NR, Sanford MS. Inorg. Chem. 2007; 46: 1924
  • 6 Beringer FM, Geering EJ, Kuntz I, Mausner M. J. Phys. Chem. 1956; 60: 141
  • 7 Caserio MC, Glusker DL, Roberts JD. J. Am. Chem. Soc. 1959; 81: 336
  • 8 Lockhart TP. J. Am. Chem. Soc. 1983; 105: 1940
  • 9 Zollinger H. Acc. Chem. Res. 1973; 6: 335

    • For reviews on organometallic copper(III) complexes, see:
    • 10a Hickman AJ, Sanford MS. Nature 2012; 484: 177
    • 10b Casitas A, Ribas X. Chem. Sci. 2013; 4: 2301
  • 11 Kang S.-K, Yamaguchi T, Kim T.-H, Ho P.-S. J. Org. Chem. 1996; 61: 9082
  • 12 Phipps RJ, Grimster NP, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172
    • 13a Barton DH. R, Finet J.-P, Khamsi J. Tetrahedron Lett. 1987; 28: 887
    • 13b Barton DH. R, Finet J.-P, Khamsi J. Tetrahedron Lett. 1988; 29: 1115
  • 14 Pitts AK, O’Hara F, Snell RH, Gaunt MJ. Angew. Chem. Int. Ed. 2015; 54: 5451
  • 15 Ito M, Itani I, Toyoda Y, Morimoto K, Dohi T, Kita Y. Angew. Chem. Int. Ed. 2012; 51: 12555
  • 16 Zhu S, MacMillan DW. C. J. Am. Chem. Soc. 2012; 134: 10815
  • 17 Kieffer ME, Chuang KV, Reisman SE. Chem. Sci. 2012; 3: 3170
  • 18 Kieffer ME, Chuang KV, Reisman SE. J. Am. Chem. Soc. 2013; 135: 5557
  • 19 Modha SC, Greaney MF. J. Am. Chem. Soc. 2015; 137: 1416
  • 20 Yang Y, Li R, Zhao Y, Zhao D, Shi Z. J. Am. Chem. Soc. 2016; 138: 8734
  • 21 Kumar D, Pilania M, Arun V, Pooniya S. Org. Biomol. Chem. 2014; 12: 6340
  • 22 Liu C, Wang Q. Org. Lett. 2016; 18: 5118
  • 23 Phipps RJ, Gaunt MJ. Science 2009; 323: 1593
  • 24 Chen B, Hou X.-L, Li Y.-X, Wu Y.-D. J. Am. Chem. Soc. 2011; 133: 7668
  • 25 Duong HA, Gilligan RE, Cooke ML, Phipps RJ, Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 463
  • 26 Ciana C.-L, Phipps RJ, Brandt JR, Meyer F.-M, Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 458
  • 27 Allen AE, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 4260
    • 28a Bigot A, Williamson AE, Gaunt MJ. J. Am. Chem. Soc. 2011; 133: 13778
    • 28b Harvey JS, Simonovich SP, Jamison CR, MacMillan DW. C. J. Am. Chem. Soc. 2011; 133: 13782
  • 29 Ryan JH, Stang PJ. Tetrahedron Lett. 1997; 38: 5061
  • 30 Pan J.-L, Chen T, Zhang Z.-Q, Li Y.-F, Zhang X.-M, Zhang F.-M. Chem. Commun. 2016; 52: 2382
  • 31 Gigant N, Chausset-Boissarie L, Belhomme M.-C, Poisson T, Pannecoucke X, Gillaizeau I. Org. Lett. 2013; 15: 278
  • 32 Prakash M, Muthusamy S, Kesavan V. J. Org. Chem. 2014; 79: 7836
  • 33 Phipps RJ, McMurray L, Ritter S, Duong HA, Gaunt MJ. J. Am. Chem. Soc. 2012; 134: 10773
  • 34 Cahard E, Bremeyer N, Gaunt MJ. Angew. Chem. Int. Ed. 2013; 52: 9284
  • 35 Cahard E, Male HP. J, Tissot M, Gaunt MJ. J. Am. Chem. Soc. 2015; 137: 7986
  • 36 Zhang F, Das S, Walkinshaw AJ, Casitas A, Taylor M, Suero MG, Gaunt MJ. J. Am. Chem. Soc. 2014; 136: 8851
  • 38 Baralle A, Fensterbank L, Goddard J.-P, Ollivier C. Chem. Eur. J. 2013; 19: 10809
  • 39 Suero MG, Bayle ED, Collins BS. L, Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 5332
  • 40 Collins BS. L, Suero MG, Gaunt MJ. Angew. Chem. Int. Ed. 2013; 52: 5799
  • 41 Xu Z.-F, Cai C.-X, Liu J.-T. Org. Lett. 2013; 15: 2096
  • 42 Walkinshaw AJ, Xu W, Suero MG, Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 12532
  • 43 Sinai Á, Mészáros Á, Gáti T, Kudar V, Palló A, Novák Z. Org. Lett. 2013; 15: 5654
  • 44 Székely A, Sinai Á, Tóth EB, Novák Z. Synthesis 2014; 46: 1871
  • 45 Sinai Á, Vangel D, Gáti T, Bonbicz P, Novák Z. Org. Lett. 2015; 17: 4136
  • 46 Chen J, Chen C, Chen J, Wang G, Qu H. Chem. Commun. 2015; 51: 1356
  • 47 Peng J, Chen C, Chen J, Su X, Xi C, Chen H. Org. Lett. 2014; 16: 3776
  • 48 Beringer FM, Brierley A, Drexler M, Gindler EM, Lumpkin CC. J. Am. Chem. Soc. 1953; 75: 2708

    • For some recent examples, see:
    • 49a Carroll MA, Wood RA. Tetrahedron 2007; 63: 11349
    • 49b Ackermann L, Dell’Acqua M, Fenner S, Vicente R, Sandmann R. Org. Lett. 2011; 13: 2358
    • 49c Riedmüller S, Nachtsheim BJ. Synlett 2015; 26: 651
    • 49d Tinnis F, Stridfeldt E, Lundberg H, Adolfsson H, Olofsson B. Org. Lett. 2015; 17: 2688
  • 50 Scherrer RA, Beatty HR. J. Org. Chem. 1980; 45: 2127
  • 51 Pang X, Lou Z, Li M, Wen L, Chen C. Eur. J. Org. Chem. 2015; 3361
  • 52 Vaddula B, Leazer J, Varma RS. Adv. Synth. Catal. 2012; 354: 986
  • 53 Geng X, Mao S, Chen L, Yu J, Han J, Hua J, Wang L. Tetrahedron Lett. 2014; 55: 3856
  • 54 Moon S.-Y, Koh M, Rathwell K, Jung S.-H, Kim W.-S. Tetrahedron 2015; 71: 1566
    • 55a Peng J, Chen C, Wang Y, Lou Z, Li M, Xi C, Chen H. Angew. Chem. Int. Ed. 2013; 52: 7574
    • 55b Wang Y, Li M, Wen L, Jing P, Sub X, Chen C. Org. Biomol. Chem. 2015; 13: 751
  • 56 Minami H, Sueda T, Okamoto N, Miwa Y, Ishikura M, Yanada R. Eur. J. Org. Chem. 2016; 541
  • 57 Sokolovs I, Lubriks D, Suna E. J. Am. Chem. Soc. 2014; 136: 6920
  • 58 Berzina B, Sokolovs I, Suna E. ACS Catal. 2015; 5: 7008
  • 59 Kang S.-K, Lee S.-H, Lee D. Synlett 2000; 1022
  • 60 Davydov DV, Beletskaya IP, Semenovb BB, Smushkevich YI. Tetrahedron Lett. 2002; 43: 6217
  • 61 Beletskaya IP, Davydov DV, Gorovoy MS. Tetrahedron Lett. 2002; 43: 6221
  • 62 Beletskaya IP, Davydov DV, Moreno-Mañas M. Tetrahedron Lett. 1998; 39: 5621
  • 63 Zhou T, Chen Z.-C. Synth. Commun. 2002; 32: 903
  • 64 Zhou T, Chen Z.-C. Heteroat. Chem. 2002; 13: 617
  • 65 Niu H.-Y, Xia C, Qu G.-R, Zhang Q, Jiang Y, Mao R.-Z, Li D.-Y, Guo H.-M. Org. Biomol. Chem. 2011; 9: 5039
  • 66 Lv T, Wang Z, You J, Lan J, Gao G. J. Org. Chem. 2013; 78: 5723
  • 67 Mao S, Guo F, Li J, Geng X, Yu J, Han J, Wang L. Synlett 2013; 24: 1959
  • 68 Howell TO, Huckaba AJ. Hollis T. K. Org. Lett. 2014; 16: 2570
  • 69 Reus C, Stolar M, Vanderkley J, Nebauer J, Baumgartner T. J. Am. Chem. Soc. 2015; 137: 11710
  • 70 Wang Y, Chen C, Peng J, Li M. Angew. Chem. Int. Ed. 2013; 52: 5323
  • 71 Su X, Chen C, Wang Y, Chen JJ, Lou ZB, Li M. Chem. Commun. 2013; 49: 6752
  • 72 Wang Y, Chen C, Zhang S, Lou Z, Su X, Wen L, Li M. Org. Lett. 2013; 15: 4794
  • 73 Pang X, Chen C, Su X, Li M, Wen L. Org. Lett. 2014; 16: 6228
  • 74 Aradi K, Novák Z. Adv. Synth. Catal. 2015; 357: 371
  • 75 Li J, Wang H, Sun J, Yang Y, Liu L. Org. Biomol. Chem. 2014; 12: 7904
  • 76 Li P, Cheng G, Zhang H, Xu X, Gao J, Cui X. J. Org. Chem. 2014; 79: 8156
  • 77 Kumar D, Reddy VB. Synthesis 2010; 1687
  • 78 Lubriks D, Sokolovs I, Suna E. J. Am. Chem. Soc. 2012; 134: 15436
  • 79 Liu Z, Zhu D, Luo B, Zhang N, Liu Q, Hu Y, Pi R, Huang P, Wen S. Org. Lett. 2014; 16: 5600
  • 80 Chen J, Chen C, Chen J, Gao H, Qu H. Synlett 2014; 25: 2721

    • For selected examples, see:
    • 81a Lubinkowski JJ, Knapczyk JW, Calderon JL, Petit LR, McEwen WE. J. Org. Chem. 1975; 40: 3010
    • 81b Marsh G, Stenutz R, Bergman A. Eur. J. Org. Chem. 2003; 2566
    • 81c Jalalian N, Petersen TB, Olofsson B. Chem. Eur. J. 2012; 18: 14140
    • 81d Lindstedt E, Ghosh R, Olofsson B. Org. Lett. 2013; 15: 6070
    • 81e Ghosh R, Olofsson B. Org. Lett. 2014; 16: 1830
    • 81f Chan L, McNally A, Toh QY, Mendoza A, Gaunt MJ. Chem. Sci. 2015; 6: 1277
  • 82 Kuriyama M, Hamaguchi N, Onomura O. Chem. Eur. J. 2012; 18: 1591
  • 83 Bhattarai B, Tay J.-H, Nagorny P. Chem. Commun. 2015; 51: 5398
  • 84 Sokolovs I, Suna E. J. Org. Chem. 2016; 81: 371
  • 85 Fañanás-Mastral M, Feringa BL. J. Am. Chem. Soc. 2014; 136: 9894
  • 86 Xu Z.-F, Cai C.-X, Jiang M, Liu J.-T. Org. Lett. 2014; 16: 3436
  • 87 Ichiishi N, Canty AJ, Yates BF, Sanford MS. Org. Lett. 2013; 15: 5134
  • 88 Ichiishi N, Canty AJ, Yates BF, Sanford MS. Organometallics 2014; 33: 5525
  • 89 Ichiishi N, Brooks AF, Topczewski JJ, Rodnick ME, Sanford MS, Scott PJ. Org. Lett. 2014; 16: 3224
  • 90 Zlatopolskiy BD, Zischler J, Krapf P, Zarrad F, Urusova EA, Kordys E, Endepols H, Neumaier B. Chem. Eur. J. 2015; 21: 5972

    • For selected examples, see:
    • 91a Chen Z.-C, Jin Y.-Y, Stang PJ. J. Org. Chem. 1987; 52: 4117
    • 91b You J.-Z, Chen Z.-C. Synthesis 1992; 521
    • 91c Xia M, Chen Z.-C. Synth. Commun. 1997; 27: 1309
    • 91d Umierski N, Manolikakes G. Org. Lett. 2013; 15: 188
  • 92 Cullen SC, Shekhar S, Nere NK. J. Org. Chem. 2013; 78: 12194
  • 93 Bhong BY, Shelke AV, Karade NN. Tetrahedron Lett. 2013; 54: 739
  • 94 Guo W, Li S, Tang L, Li M, Wen L, Chen C. Org. Lett. 2015; 17: 1232
  • 95 For a transition-metal-free P-arylation with diaryliodonium salts, see: Liu Z.-D, Chen Z.-C. Synthesis 1993; 373
  • 96 Xu J, Zhang P, Gao Y, Chen Y, Tang G, Zhao Y. J. Org. Chem. 2013; 78: 8176
  • 97 Beaud R, Phipps RJ, Gaunt MJ. J. Am. Chem. Soc. 2016; 138: 13183
  • 98 Wu B, Yoshikai N. Angew. Chem. Int. Ed. 2015; 54: 8736