Synthesis 2017; 49(21): 4827-4844
DOI: 10.1055/s-0036-1589514
feature
© Georg Thieme Verlag Stuttgart · New York

A Radical Access to CF3- and SF5-Containing Dihydrobenzofurans and Indolines

Justine Desroches, Audrey Gilbert, Camille Houle, Jean-François Paquin*
This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds de recherche du Québec – Nature et technologies (FRQNT), the FRQNT Centre in Green Chemistry and Catalysis (CCVC), and the Université Laval.
Further Information

Publication History

Received: 29 August 2017

Accepted: 05 September 2017

Publication Date:
04 October 2017 (eFirst)

These authors contributed equally to this work.

Abstract

The synthesis of 3-(2,2,2-trifluoroethyl)-2,3-dihydrobenzofurans, 3-(2,2,2-trifluoroethyl)indolines, 3-[(pentafluorosulfanyl)methyl]-2,3-dihydrobenzofurans, and 3-[(pentafluorosulfanyl)methyl]indolines using an intramolecular reductive radical cyclization from readily available acyclic precursors is reported. The CF3- and SF5-containing heterocycles are obtained in moderate to excellent yields. Notably, this transformation represents the first example of an aryl radical addition to a SF5-containing alkene. Finally, the possibility of oxidation of some of the products generated to benzofurans and indoles is shown.

Supporting Information

 
  • References

    • 2a Böhm HJ. Banner D. Bendels S. Kansy M. Kuhn B. Müller K. Obst-Sander U. Stahl M. ChemBioChem 2004; 5: 637
    • 2b Müller K. Faeh C. Diederich F. Science 2007; 317: 1881
    • 2c Shah P. Westwell AD. J. Enzyme Inhib. Med. Chem. 2007; 22: 527
    • 2d Begué JP. Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; Hoboken; 2007: 1-365
    • 2e Purser S. Moore PR. Swallow S. Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2f Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 2g Yamazaki T. Taguchi T. Ojima I. In Fluorine in Medicinal Chemistry and Chemical Biology . Ojima I. Wiley-Blackwell; Chichester; 2009: 1-46
    • 2h Wang J. Sánchez-Roselló M. Aceña JL. del Pozo C. Sorochinsky AE. Fustero S. Soloshonok VA. Liu H. Chem. Rev. 2014; 114: 2432
    • 2i Eastman KJ. Gillis EP. Meanwell NA. 5-Membered Hetero­cycles and Macrocycles . In Fluorine in Heterocyclic Chemistry . Vol. 1 Nenajdenko V. Springer International; Cham; 2014: 1-54
    • 2j Gillis EP. Eastman KJ. Hill MD. Donnelly DJ. Meanwell NA. J. Med. Chem. 2015; 58: 8315
    • 2k Zhou Y. Wang J. Gu J. Wang S. Zhu W. Aceña JL. Soloshonok VA. Izawa K. Liu H. Chem. Rev. 2016; 116: 422
  • 4 3-(2,2,2-Trifluoroethyl)-2,3-dihydrobenzofuran was generated in 29% yield along with 1-(allyloxy)-2-(trifluoromethyl)benzene (36%) in the copper-catalyzed trifluoromethylation of [2-(allyl­oxy)phenyl]zinc(II) halide, see: Wang C.-S. Wang H. Yao C. RSC Adv. 2015; 5: 24783
  • 5 Bertrand F. Pevere V. Quiclet-Sire B. Zard SZ. Org. Lett. 2001; 3: 1069
  • 6 Umemoto’s reagent: 5-(trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate.
  • 7 Dai J.-J. Fang C. Xiao B. Yi J. Xu J. Liu Z.-J. Lu X. Liu L. Fu Y. J. Am. Chem. Soc. 2013; 135: 8436

    • A similar process was used for a radical clock experiment, see:
    • 8a Lishchynskyi A. Berthon G. Grushin VV. Chem. Commun. 2014; 50: 10237
    • 8b Zhang K. Xu X.-H. Qing F.-L. J. Org. Chem. 2015; 80: 7658
  • 9 Togni’s reagent: 3,3-dimethyl-1-(trifluoromethyl)-1,2-benziodoxole.
  • 10 Egami H. Shimizu R. Kawamura S. Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 4000

    • For selected examples of bioactive 3-(2,2,2-trifluoroethyl)-2,3-dihydrobenzofuran and 3-(2,2,2-trifluoroethyl)indoline derivatives, see:
    • 11a Yang W. Wang Y. Lai A. Qiao JX. Wang TC. Hua J. Price LA. Shen H. Chen X.-q. Wong P. Crain E. Watson C. Huang CS. Seiffert DA. Rehfuss R. Wexler RR. Lam PY. S. J. Med. Chem. 2014; 57: 6150
    • 11b Mateu N. Ciordia M. Delgrado O. Sánchez-Roselló M. Trabanco AA. Van Gool M. Tresadern G. Pérez-Benito L. Fustero S. Chem. Eur. J. 2015; 21: 11719
    • 11c Semple G. Behan DP. Feichtinger K. Glicklich A. Grottick AJ. Kam MM. S. Kasem M. Lehmann J. Ren AS. Schrader TO. Shanahan WR. Wong AS.-T. Zhu X. Patent WO2015066344, 2015
    • 11d Ren AS. Semple G. Zhu X. Sage CR. Patent WO2016176177, 2016
    • 11e Chen L. Liu Y. Song H. Liu Y. Wang L. Wang Q. Mol. Divers. 2017; 21: 61
    • 12a Hemelaere R. Desroches J. Paquin J.-F. Org. Lett. 2015; 17: 1770
    • 12b Forcellini E. Hemelaere R. Desroches J. Paquin J.-F. J. Fluorine Chem. 2015; 180: 216
  • 13 Chatgilialoglu C. Griller D. Lesage M. J. Org. Chem. 1998; 53: 3641
  • 14 Silvey GA. Cady GH. J. Am. Chem. Soc. 1950; 72: 3624
  • 16 Bowden RD. Comina PJ. Greenhall MP. Kariuki BM. Loveday A. Philp D. Tetrahedron 2000; 56: 3399
  • 17 Thayer AM. Chem. Eng. News 2006; 84 (issue 23): 27

    • For selected examples, see:
    • 18a Welch JT. Lim DS. Bioorg. Med. Chem. 2007; 15: 6659
    • 18b Wipf P. Mo T. Geib SJ. Caridha D. Dow GS. Gerena L. Roncal N. Milner EE. Org. Biomol. Chem. 2009; 7: 4163
    • 18c Mo T. Mi X. Milnner EE. Dow GS. Wipf P. Tetrahedron Lett. 2010; 51: 5137
    • 18d Chia PW. Brennan SC. Slawin AM. Z. Riccardi D. O’Hagan D. Org. Biomol. Chem. 2012; 10: 7922
    • 18e Altomonte S. Baillie GL. Ross RA. Riley J. Zanda MT. RSC Adv. 2014; 4: 20164
    • 18f Alverez C. Arkin MR. Bulfer SL. Colombo R. Kovaliov M. LaPorte MG. Lim C. Liang M. Moore WJ. Neitz RJ. Yan Y. Yue Z. Huryn DM. Wipf P. ACS Med. Chem. Lett. 2015; 6: 1225
    • 18g Hendriks CM. M. Penning TM. Zang T. Wiemuth D. Gründer S. Sanhueza IA. Schoenebeck F. Bolm C. Bioorg. Med. Chem. Lett. 2015; 25: 4437

      For selected examples, see:
    • 19a Alt GH. Pratt JK. Phillips WG. Srouji GH. Patent EP371950, 1990
    • 19b Kay IT. Barton JE. D. Collins DJ. Kowalczyk B. Mitchell G. Shribbs JM. Cox JM. Barnes NJ. Smith SC. Patent WO9413652, 1994
    • 19c Howard MH. Jr. Stevenson TM. Patent WO9516676, 1995
    • 19d Banks BJ. Patent WO9707102, 1997
    • 19e Banks BJ. Patent WO9824767, 1998
    • 19f Banks BJ. Patent EP933363, 1999
    • 19g Lim DS. Choi JS. Pak CS. Welch JT. J. Pest. Sci. 2007; 32: 255

      For selected examples, see:
    • 20a Kirsch P. Bremer M. Heckmeier M. Tarumi K. Angew. Chem. Int. Ed. 1999; 38: 1989
    • 20b Winter R. Nixon PG. Gard GL. Castner DG. Holcomb NR. Hu Y.-H. Grainger DW. Chem. Mater. 1999; 11: 3044
    • 20c Kirsch P. Binder JT. Lork E. Röschenthaler G.-V. J. ­Fluorine Chem. 2006; 127: 610
    • 20d Ponomarenko MV. Kalinovich N. Serguchev YA. Bremer M. Röschenthaler G.-V. J. Fluorine Chem. 2012; 135: 68
    • 20e Martinez H. Zheng Z. Dolbier WR. Jr. J. Fluorine Chem. 2012; 143: 112
    • 20f Iida N. Tanaka K. Tokunaga E. Mori S. Saito N. Shibata N. ChemistryOpen 2015; 4: 698

      Pentafluoro(3-hydroxy-1-propenyl)sulfur (7) is commercially available, but it can also be prepared from allyl alcohol or allyl acetate using SF5Cl, see:
    • 21a Trushkova IV. Brel VK. Tetrahedron Lett. 2005; 46: 4777
    • 21b Brel VK. Synthesis 2006; 339
    • 21c Falkowska E. Suzenet F. Jubault P. Bouillon J.-P. Pannecoucke X. Tetrahedron Lett. 2014; 55: 4833
  • 22 Desroches J. Forcellini E. Paquin J.-F. Eur. J. Org. Chem. 2016; 4611

    • For instance, see:
    • 23a Beckwith AL. J. Schiesser CH. Tetrahedron 1985; 41: 3925
    • 23b Spellmeyer DC. Houk KN. J. Org. Chem. 1987; 52: 959
    • 23c RajanBabu TV. Acc. Chem. Res. 1991; 24: 139
    • 23d Curran DP. Porter NA. Giese B. Stereochemistry of Radical Reactions . VCH; Weinheim; 1995
    • 24a Hara T. Mori K. Mizugaki T. Ebitani K. Kaneda K. ­Tetrahedron Lett. 2003; 44: 6207
    • 24b Tilstam U. Harre M. Heckrodt T. Weinmann H. Tetrahedron Lett. 2001; 42: 5385
    • 24c Hara T. Mori K. Mizugaki T. Ebitani K. Kaneda K. Tetrahedron Lett. 2003; 44: 6207
    • 24d Huang B. Tian H. Lin S. Xie M. Yu M. Xu Q. Tetrahedron Lett. 2013; 54: 2861
    • 24e Mangion IK. Chen C.-Y. Li H. Malignes P. Chen Y. Christensen M. Cohen R. Jeon I. Klapars A. Krska S. Nguyen H. Reamer RA. Sherry BD. Zavialov I. Org. Lett. 2014; 16: 2310
    • 24f Peng F. McLaughlin M. Liu Y. Mangion I. Tschaen DM. Xu Y. J. Org. Chem. 2016; 81: 10009

      For example, see:
    • 25a Huang Y. Gard GL. Shreeve JM. ­Tetrahedron Lett. 2010; 51: 6951
    • 25b Dudziński P. Matsnev AV. Trasher JS. Haufe G. J. Org. Chem. 2016; 81: 4454
  • 26 Zhou C. Wang S. Zhang G. Patent WO20130977224, 2013
  • 27 Mangas-Sánchez J. Busto E. Gotor-Fernández V. Gotor V. Org. Lett. 2010; 12: 3498
  • 28 Schmidt B. Holter F. Org. Biomol. Chem. 2011; 9: 4914
  • 29 Bhatt S. Nayak SK. Synth. Commun. 2007; 37: 1381
  • 30 Lee C.-I. Zhou J. Ozerov OV. J. Am. Chem. Soc. 2013; 135: 3560
  • 31 Agou T. Kobayashi J. Kawashima T. Org. Lett. 2006; 8: 2241
  • 32 Bartoli S. Cipollone A. Squarcia A. Madami A. Fattori D. Synthesis 2009; 1305
  • 33 Würtz S. Lohre C. Fröhlich R. Bergander K. Glorius F. J. Am. Chem. Soc. 2009; 131: 8344
  • 34 Xu S. Haeffner F. Li B. Zakharov LN. Liu S.-Y. Angew. Chem. Int. Ed. 2014; 53: 6795
  • 35 Jensen T. Pedersen H. Bang-Andersen B. Madsen R. Jørgensen M. Angew. Chem. Int. Ed. 2008; 47: 888
  • 36 Under all conditions tested for HRMS analysis [ESI (+), ESI (–), APPI], we could not detect any significant ions.
  • 37 O’Connor RE. Keating JJ. Drug Test. Anal. 2014; 6: 658
  • 38 Hadida Ruah SS. Hazlewood AR. Grooten-Huis PD. J. Van Goor FF. Singh AK. Zhou J. McCartney J. Patent WO2006002421, 2006
  • 39 Yang X.-Y. Dong VM. J. Am. Chem. Soc. 2017; 139: 1774
  • 40 Marrero JG. Luis JG. Andrés LS. Chem. Pharm. Bull. 2005; 53: 1524