Synthesis 2018; 50(01): 1-16
DOI: 10.1055/s-0036-1589517
review
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Catalyzed Reactions Involving Arynes

Ranjeet A. Dhokale
Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India   Email: [email protected]
,
Santosh B. Mhaske*
Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India   Email: [email protected]
› Author Affiliations
R.A.D thanks UGC-SRF research fellowship. S.B.M thanks great fully acknowledges generous financial support from DST-SERB, New Delhi.
Further Information

Publication History

Received: 04 August 2017

Accepted after revision: 29 August 2017

Publication Date:
22 November 2017 (online)


Abstract

The plethora of transformations attainable by the transition-metal-catalyzed reactions of arynes has found immense contemporary interest in the scientific community. This review highlights the scope and importance of transition-metal-catalyzed aryne reactions in the field of synthetic organic chemistry reported to date. It covers transformations achieved by the combination of arynes and various transition metals, which provide a facile access to a biaryl motif, fused polycyclic aromatic compounds, different novel carbocycles, various heterocycles, and complex natural products.

1 Introduction

2 Insertion of Arynes

3 Annulation of Arynes

4 Cycloaddition of Arynes

5 Multicomponent Reactions of Arynes

6 Miscellaneous Reactions of Arynes

7 Total Synthesis of Natural Products Using Arynes

8 Conclusion

 
  • References

  • 1 Pellissier H. Santelli M. Tetrahedron 2003; 59: 701
  • 2 Wenk HH. Winkler M. Sander W. Angew. Chem. Int. Ed. 2003; 42: 502
  • 3 Sanz R. Org. Prep. Proced. Int. 2008; 40: 215
  • 4 Wentrup C. Aust. J. Chem. 2010; 63: 979
  • 5 Tadross PM. Stoltz BM. Chem. Rev. 2012; 112: 3550
  • 6 Gampe CM. Carreira EM. Angew. Chem. Int. Ed. 2012; 51: 3766
  • 7 Bhunia A. Yetra SR. Biju AT. Chem. Soc. Rev. 2012; 41: 3140
  • 8 Bhojgude SS. Biju AT. Angew. Chem. Int. Ed. 2012; 51: 1520
  • 9 Yoshida H. Takaki K. Synlett 2012; 23: 1725
  • 10 Yoshida H. Takaki K. Heterocycles 2012; 85: 1333
    • 11a Pérez D. Peña D. Guitián E. Eur. J. Org. Chem. 2013; 5981
    • 11b Dubrovskiy AV. Markina NA. Larock RC. Org. Biomol. Chem. 2013; 11: 191
  • 12 Yoshida H. Aryne-Based Multicomponent Reactions. In Multicomponent Reactions in Organic Synthesis. Zhu J. Wang Q. Wang M.-X. Wiley-VCH; Weinheim: 2015: 39
  • 13 Yoshida H. Nucleophilic Coupling with Arynes . In Comprehensive Organic Synthesis . 2nd ed., Vol. 4; Knochel P. Molander GA. Elsevier; Amsterdam: 2014: 517
  • 14 Yoshida S. Hosoya T. Chem. Lett. 2015; 44: 1450
    • 15a Bhojgude SS. Bhunia A. Biju AT. Acc. Chem. Soc. 2016; 49: 1658
    • 15b García-López JA. Greaney MF. Chem. Soc. Rev. 2016; 45: 6766
    • 15c Wu C. Shi F. Asian J. Org. Chem. 2013; 2: 116
    • 15d Peña D. Pérez D. Guitián E. Heterocycles 2007; 74: 89
  • 16 Stoermer R. Kahlert B. Ber. Dtsch. Chem. Ges. 1902; 35: 1633
  • 17 Wittig G. Naturwissenschaften 1942; 30: 696
  • 18 Roberts JD. Simmons HE. Carlsmith LA. Vaughan CW. J. Am. Chem. Soc. 1953; 75: 3290
  • 19 Sapountzis I. Lin W. Fischer M. Knochel P. Angew. Chem. Int. Ed. 2004; 43: 4364
  • 20 Dyke AM. Hester AJ. Lloyd-Jones GC. Synthesis 2006; 4093
  • 21 Gilchrist TL. Science of Synthesis . Vol. 43. Hopf H. Thieme; Stuttgart: 2008: 151
  • 22 Hoye TR. Baire B. Niu D. Willoughby PH. Woods BP. Nature (London) 2012; 490: 208
  • 23 Antonio J. López G. Greaney MF. Org. Lett. 2014; 16: 2338
  • 24 Ikawa T. Yamamoto R. Takagi A. Ito T. Shimizu K. Goto M. Hamashima Y. Akaia S. Adv. Synth. Catal. 2015; 357: 2287
  • 25 Mesgar M. Daugulis O. Org. Lett. 2016; 18: 3910
  • 26 Himeshima Y. Sonoda T. Kobayashi H. Chem. Lett. 1983; 1211
  • 27 Worlikar SA. Larock RC. Curr. Org. Chem. 2011; 15: 3214
  • 29 Akubathini S. Biehl E. Tetrahedron Lett. 2009; 50: 1809
  • 30 Pawliczek M. Garve L. Werz D. Org. Lett. 2015; 17: 1716
  • 31 Pareek M. Fallon T. Oestriech M. Org. Lett. 2015; 17: 2082
  • 32 Pérez-Gómez M. García-López JA. Angew. Chem. Int. Ed. 2016; 55: 14389
  • 33 Chen Q. Yan X. Du Z. Zhang K. Wen C. J. Org. Chem. 2016; 81: 9476
  • 34 Yoon H. Lossouarn D. Landau F. Lautens M. Org. Lett. 2016; 18: 6324
  • 35 Yao T. He D. Org. Lett. 2017; 19: 842
  • 36 Lu C. Dubrovskiy AV. Larock RC. J. Org. Chem. 2012; 77: 8648
  • 37 Huang X. Sha F. Tong J. Adv. Synth. Catal. 2010; 352: 379
  • 38 Lu C. Markina NA. Larock RC. J. Org. Chem. 2012; 77: 11153
  • 39 Dong Y. Liu B. Chen P. Liu Q. Wang M. Angew. Chem. Int. Ed. 2014; 53: 3442
  • 40 Yuan W. Ma S. Org. Lett. 2014; 16: 193
  • 41 Yang Y. Huang H. Wu L. Liang Y. Org. Biomol. Chem. 2014; 12: 5351
  • 42 Tang CY. Wu XY. Sha F. Zhang F. Li H. Tetrahedron Lett. 2014; 55: 1036
  • 43 Peng X. Wang W. Jiang C. Sun D. Xu Z. Tung C. Org. Lett. 2014; 16: 5354
  • 44 Pimparkar S. Jeganmohan M. Chem. Commun. 2014; 50: 12116
  • 45 Wang W. Peng X. Qin X. Zhao X. Ma C. Tung CH. Xu Z. J. Org. Chem. 2015; 80: 2835
  • 46 Yao T. Zhang H. Zhao Y. Org. Lett. 2016; 18: 2532
  • 47 Neog K. Borah A. Gogoi P. J. Org. Chem. 2016; 81: 11971
  • 48 Zhang TY. Lin JB. Li QZ. Kang JC. Pan JL. Hou SH. Chen C. Zhang SY. Org. Lett. 2017; 19: 1764
  • 49 Guitián E. Pérez D. Peña D. Top. Organomet. Chem. 2005; 14: 109
  • 50 Hsieh JC. Cheng CH. Chem. Commun. 2005; 2459
  • 51 Hsieh JC. Cheng CH. Chem. Commun. 2008; 2992
  • 52 Saito N. Shiotani K. Kinbara A. Sato Y. Chem. Commun. 2009; 4284
  • 53 Qiu Z. Xie Z. J. Am. Chem. Soc. 2009; 131: 2084
  • 54 Qiu Z. Xie Z. Angew. Chem. Int. Ed. 2009; 48: 5729
  • 55 Candito D. Lautens M. Synlett 2011; 1987
  • 56 Lin Y. Wu L. Huang X. Eur. J. Org. Chem. 2011; 2993
  • 57 Patel RM. Argade NP. Org. Lett. 2013; 15: 14
  • 58 Parthasarathy K. Han H. Prakash C. Cheng CH. Chem. Commun. 2012; 48: 6580
  • 59 Ni S. Shu W. Ma S. Synlett 2013; 24: 2310
    • 60a Chen L. Zhang C. Wen C. Zhang K. Liu W. Chen Q. Catal. Commun. 2015; 65: 81
    • 60b Schuler B. Collazos S. Gross L. Meyer G. Pérez D. Guitián E. Peña D. Angew. Chem. Int. Ed. 2014; 53: 9004
    • 60c Lin JB. Shah TK. Goetz AE. Garg NK. Houk KN. J. Am. Chem. Soc. 2017; 139: 10447
  • 61 Ganta A. Snowden TS. Org. Lett. 2008; 10: 5103
  • 62 Berti F. Crotti P. Cassano G. Pineshi M. Synlett 2012; 23: 2463
  • 63 Zeng Y. Zhang L. Zhao Y. Ni C. Zhao J. Hu J. J. Am. Chem. Soc. 2013; 135: 2955
  • 64 Yoo W. Nguyen TN. Kobayashi S. Angew. Chem. Int. Ed. 2014; 53: 10213
  • 65 Li J. Noyori S. Nakajima K. Nishihara Y. Organometallics 2014; 33: 3500
  • 66 Yang J. Yu X. Wu J. Synthesis 2014; 46: 1362
  • 67 Garve L. Werz D. Org. Lett. 2015; 17: 596
  • 68 Feng M. Tang B. Wang N. Xu HX. Jiang X. Angew. Chem. Int. Ed. 2015; 54: 14960
  • 69 Feng M. Tang B. Xu HX. Jiang X. Org. Lett. 2016; 18: 4352
  • 70 Peng XL. Ma C. Tung CH. Xu Z. Org. Lett. 2016; 18: 4154
  • 71 Zeng Y. Hu J. Org. Lett. 2016; 18: 856
  • 72 García-López JA. Oliva-Madrid MJ. Saura-Llamas I. Bautista D. Vicente J. Chem. Commun. 2012; 48: 6744
  • 73 Oliva-Madrid MJ. Saura-Llamas I. Bautista D. Vicente J. Chem. Commun. 2013; 49: 7997
  • 74 Sibbel F. Daniliuc C. Studer A. Eur. J. Org. Chem. 2015; 4635
  • 75 Mizukoshi Y. Mikami K. Uchiyama M. J. Am. Chem. Soc. 2015; 137: 74