Synlett 2017; 28(15): 1961-1965
DOI: 10.1055/s-0036-1590796
cluster
© Georg Thieme Verlag Stuttgart · New York

Synthesis of an MUC1 Glycopeptide Dendrimer Based on β-Cyclodextrin by Click Chemistry

Pu-Guang Chen
Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. of China   Email: liym@mail.tsinghua.edu.cn
,
Zhi-Hua Huang
Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. of China   Email: liym@mail.tsinghua.edu.cn
,
Zhan-Yi Sun
Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. of China   Email: liym@mail.tsinghua.edu.cn
,
Qian-Qian Li
Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. of China   Email: liym@mail.tsinghua.edu.cn
,
Yong-Xiang Chen
Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. of China   Email: liym@mail.tsinghua.edu.cn
,
Yu-Fen Zhao
Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. of China   Email: liym@mail.tsinghua.edu.cn
,
Yan-Mei Li*
Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. of China   Email: liym@mail.tsinghua.edu.cn
› Author Affiliations
This work is funded by the Major State Basic Research Development Program of China (2013CB910700) and the National Natural Science Foundation of China (21332006 and 21672126)
Further Information

Publication History

Received: 13 April 2017

Accepted after revision: 22 May 2017

Publication Date:
06 July 2017 (online)


Published as part of the Cluster Recent Advances in Protein and Peptide Synthesis

Abstract

Glycopeptide dendrimers are attractive candidates for biomedical applications. Here, an efficient method for preparing multivalent MUC1 glycopeptide dendrimers based on β-cyclodextrin is described. By using copper(I) bromide and thioanisole as a catalyst system, precisely defined heptavalent conjugates were efficiently obtained. Using this heptavalent glycopeptide dendrimer, we observed multivalent effects in recognition and association processes in antibody and epitope interactions, which might have biomedical applications.

Supporting Information

 
  • References and Notes

    • 1a Mammen M. Choi S.-K. Whitesides GM. Angew. Chem. Int. Ed. 1998; 37: 2754
    • 1b Lundquist JJ. Toone EJ. Chem. Rev. 2002; 102: 555
    • 1c Fasting C. Schalley CA. Weber M. Seitz O. Hecht S. Koksch B. Dernedde J. Graf C. Knapp E.-W. Haag R. Angew. Chem. Int. Ed. 2012; 51: 10472
  • 2 Kiessling LL. Gestwicki JE. Strong LE. Curr. Opin. Chem. Biol. 2000; 4: 696
  • 3 Kiessling LL. Gestwicki JE. Strong LE. Angew. Chem. Int. Ed. 2006; 45: 2348
  • 4 Darbre T. Reymond J.-L. Acc. Chem. Res. 2006; 39: 925
  • 5 Martínez A. Ortiz Mellet C. García Fernández JM. Chem. Soc. Rev. 2013; 42: 4746
  • 6 Bernardi A. Jiménez-Barbero J. Casnati A. De Castro C. Darbre T. Fieschi F. Finne J. Funken H. Jaeger K.-E. Lahmann M. Lindhorst TK. Marradi M. Messner P. Molinaro A. Murphy PV. Nativi C. Oscarson S. Penadés S. Peri F. Pieters RJ. Renaudet O. Reymond J.-L. Richichi B. Rojo J. Sansone F. Schäffer C. Turnbull WB. Velasco-Torrijos T. Vidal S. Vincent S. Wennekes T. Zuilhof H. Imberty A. Chem. Soc. Rev. 2013; 42: 4709
    • 7a Niederhafner P. Šebestík J. Ježek J. J. Pept. Sci. 2008; 14: 2
    • 7b Niederhafner P. Šebestík J. Ježek J. J. Pept. Sci. 2008; 14: 44
    • 7c Niederhafner P. Reiniš M. Šebestík J. Ježek J. J. Pept. Sci. 2008; 14: 556
    • 7d Chabre YM. Roy R. Curr. Top. Med. Chem. (Sharjah, United Arab Emirates) 2008; 8: 1237
    • 7e Tam JP. Lu YA. Proc. Natl. Acad. Sci. U. S. A. 1989; 86: 9084
    • 8a Kadam RU. Bergmann M. Hurley M. Garg D. Cacciarini M. Swiderska MA. Nativi C. Sattler M. Smyth AR. Williams P. Cámara M. Stocker A. Darbre T. Reymond J.-L. Angew. Chem. Int. Ed. 2011; 50: 10631
    • 8b Reymond J.-L. Bergmann M. Darbre T. Chem. Soc. Rev. 2013; 42: 4814
    • 9a Engelmann K. Baldus SE. Hanisch FG. J. Biol. Chem. 2001; 276: 27764. 21
    • 9b Burchell J. Taylor-Papadimitrmiou J. Boshell M. Gendler S. Duhig T. Int. J. Cancer 1989; 44: 691
    • 9c Ingale S. Wolfert MA. Gaekwad J. Buskas T. Boons G.-J. Nat. Chem. Biol. 2007; 3: 663
    • 9d Lakshminarayanan V. Thompson P. Wolfert MA. Buskas T. Bradley JM. Pathangey LB. Madsen CS. Cohen PA. Gendler SJ. Boons G.-J. Proc. Natl. Acad. Sci. U. S. A. 2012; 109: 261
    • 9e Gaidzik N. Westerlind U. Kunz H. Chem. Soc. Rev. 2013; 42: 4421
    • 10a Becker T. Kaiser A. Kunz H. Synthesis 2009; 1113
    • 10b Keil S. Kaiser A. Syed F. Kunz H. Synthesis 2009; 1355
    • 10c Glaffig M. Palitzsch B. Hartmann S. Schüll C. Nuhn L. Gerlitzki B. Schmitt E. Frey H. Kunz H. Chem. Eur. J. 2014; 20: 4232
    • 10d Glaffig M. Palitzsch B. Stergiou N. Schüll C. Straßburger D. Schmitt E. Frey H. Kunz H. Org. Biomol. Chem. 2015; 13: 10150
    • 11a Ozawa C. Hojo H. Nakahara Y. Katayama H. Nabeshima K. Akahane T. Nakahara Y. Tetrahedron 2007; 63: 9685
    • 11b Ozawa C. Katayama H. Hojo H. Nakahara Y. Nakahara Y. Org. Lett. 2008; 10: 3531
    • 12a Cai H. Huang Z.-H. Shi L. Zhao Y.-F. Kunz H. Li Y.-M. Chem. Eur. J. 2011; 17: 6396
    • 12b Cai H. Sun Z.-Y. Chen M.-S. Zhao Y-F. Kunz H. Li Y.-M. Angew. Chem. Int. Ed. 2014; 53: 1699
  • 13 Nuhn L. Hartmann S. Palitzsch B. Gerlitzki B. Schmitt E. Zentel R. Kunz H. Angew. Chem. Int. Ed. 2013; 52: 10652
  • 14 Chun CK. Y. Payne RJ. Aust. J. Chem. 2009; 62: 1339
  • 15 Kakwere H. Chun CK. Y. Jolliffe KA. Payne RJ. Perrier S. Chem. Commun. 2010; 46: 2188
  • 16 Skwarczynski M. Zaman M. Urbani CN. Lin I-C. Jia Z. Batzloff MR. Good MF. Monteiro MJ. Toth I. Angew. Chem. Int. Ed. 2010; 49: 5742
    • 17a Lee DJ. Yang S.-H. Williams GM. Brimble MA. J. Org. Chem. 2012; 77: 7564
    • 17b Galan MC. Dumy P. Renaudet O. Chem. Soc. Rev. 2013; 42: 4599
    • 17c Cremer G.-A. Bureaud N. Piller V. Kunz H. Piller F. Delmas AF. ChemMedChem 2006; 1: 965
  • 18 Geraci C. Consoli GM. L. Granata G. Galante E. Palmigiano A. Pappalardo M. Di Puma SD. Spadaro A. Bioconjugate Chem. 2013; 24: 1710
    • 19a Faugeras P.-A. Boëns B. Elchinger P.-H. Brouillette F. Montplaisir D. Zerrouki R. Lucas R. Eur. J. Org. Chem. 2012; 4087
    • 19b Bellia F. La Mendola D. Pedone C. Rizzarelli E. Saviano M. Vecchio G. Chem. Soc. Rev. 2009; 38: 2756
    • 20a Schaschke N. Fiori S. Weyher E. Escrieut C. Fourmy D. Müller G. Moroder L. J. Am. Chem. Soc. 1998; 120: 7030
    • 20b Joshi A. Kate S. Poon V. Mondal D. Boggara MB. Saraph A. Martin JT. McAlpine R. Day R. Garcia AE. Mogridge J. Kane RS. Biomacromolecules 2011; 12: 791
    • 20c Hjørringgaard CU. Vad BS. Matchkov VV. Nielsen SB. Vosegaard T. Nielsen NC. Otzen DE. Skrydstrup T. J. Phys. Chem. B 2012; 116: 7652
    • 21a Cai H. Huang Z.-H. Shi L. Sun Z.-Y. Zhao Y.-F. Kunz H. Li Y.-M. Angew. Chem. Int. Ed. 2012; 51: 1719
    • 21b Huang Z.-H. Shi L. Ma J.-W. Sun Z.-Y. Cai H. Chen Y.-X. Zhao Y.-F. Li Y.-M. J. Am. Chem. Soc. 2012; 134: 8730
  • 22 Dokurno P. Bates PA. Band HA. Stewart LM. D. Lally JM. Burchell JM. Taylor-Papadimitriou J. Snary D. Sternberg MJ. E. Freemont PS. J. Mol. Biol. 1998; 284: 713
  • 23 Zemplén G. Pascu E. Ber. Dtsch. Chem. Ges. 1929; 62: 1613
  • 24 Srinivasachari S. Fichter KM. Reineke TM. J. Am. Chem. Soc. 2008; 130: 4618
  • 25 Wang F. Fu H. Jiang Y. Zhao Y. Green Chem. 2008; 10: 452
  • 26 Compound 1; Typical Procedure To a solution of thioanisole (20 μL 166 mol) in DMF (200 μL) was added CuBr (2.1mg, 15.0 μmol) to form a dark-green solution when the CuBr was fully dissolved. A solution of peptide 3 (13 mg; 15.2 μmol) in DMF (0.8 mL) was added to a solution of per-6-azido-β-cyclodextrin (2 mg; 1.5 μmol) in DMF (0.5 mL), and the soln was deoxygenated with N2 gas. The dark-green catalyst solution was then carefully added to the peptide solution and the mixture was stirred at 65 °C for 2 h. The DMF was removed in vacuo, and the crude product was dissolved in 1:1 H2O–MeCN (3 mL), purified by RP-HPLC (C18 column), and lyophilized to give a white powder; yield: 7.9 mg (1.1 μmol, 73%). HRMS: m/z [M + H]+ calcd for C301H476N84O126: 7284.3422; found (MALDI-TOF) 7285.5317; (ESI ) [M + 4H]4+ 1823.0, [M + 5H]5+ 1458.4, [M + 6H]6+ 1215.7, [M + 7H]7+ 1042.1.
  • 27 Compound 2 Glycopeptide dendrimer 2 was obtained by a similar procedure to that of peptide dendrimer 1, except that the reaction time was 10 h: yield: 9.4 mg (1.1 μmol, 59%). HRMS: m/z [M + H]+calcd for C357H567N91O161: 8705.8978; found: (MALDI-TOF): 8709.4877; (ESI): [M + 5H]5+ 1743.5, [M + 6H]6+ 1453.1, [M + 7H]7+ 1245.5.
    • 28a Dziadek S. Hobel A. Schmitt E. Kunz H. Angew. Chem. Int. Ed. 2005; 44: 7630
    • 28b Cai H. Chen M.-S. Sun Z.-Y. Zhao Y.-F. Kunz H. Li Y.-M. Angew. Chem. Int. Ed. 2013; 52: 6106
    • 29a Gao Y. Sun Z.-Y. Huang Z.-H. Chen P.-G. Chen Y.-X. Zhao Y.-F. Li Y.-M. Chem. Eur. J. 2014; 20: 13541
    • 29b Liu Y.-F. Sun Z.-Y. Chen P.-G. Huang Z.-H. Gao Y. Shi L. Zhao Y.-F. Chen Y.-X. Li Y.-M. Bioconjugate Chem. 2015; 26: 1439
    • 29c Sun Z.-Y. Chen P.-G. Liu Y.-F. Zhang B.-D. Wu J.-J. Chen Y.-X. Zhao Y.-F. Li Y.-M. Chem. Commun. 2016; 52: 7572