Synthesis 2017; 49(21): 4853-4860
DOI: 10.1055/s-0036-1590804
paper
© Georg Thieme Verlag Stuttgart · New York

The Chemoenzymatic Synthesis of 2-Chloro- and 2-Fluorocordycepins

Alexandra O. Denisovaa, Yulia A. Tokunovaa, Ilja V. Fateeva, Alexandra A. Breslava, Vladimir N. Leonova, Elena V. Dorofeevaa, Olga I. Lutoninaa, Inessa S. Muzykaa, Roman S. Esipova, Alexey L. Kayushina, Irina D. Konstantinovaa, Anatoly I. Miroshnikova, Vladimir A. Stepchenkob, Igor A. Mikhailopulo*b
  • aShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow B-437, 117997 GSP-7, Russian Federation
  • bInstitute of Bioorganic Chemistry, National Academy of Sciences, Acad. Kuprevicha 5/2, 220141 Minsk, Belarus   Email: imikhailopulo@gmail.com
Financial support by the International Science and Technology Centre (project #B-1640) and the Byelorussian Republican Foundation for Fundamental Research (project No. X13MC-027) is gratefully acknowledged.
Further Information

Publication History

Received: 04 April 2017

Accepted after revision: 25 May 2017

Publication Date:
20 July 2017 (eFirst)

Abstract

Two approaches to the chemoenzymatic synthesis of 2-fluorocordycepin and 2-chlorocordycepin were studied: (i) the use of 3′-deoxyadenosine (cordycepin) and 3′-deoxyinosine (3′dIno) as donors of 3-deoxy-d-ribofuranose in the transglycosylation of 2-fluoro- (2FAde) and 2-chloroadenine (2ClAde) catalyzed by the recombinant E. coli purine nucleoside phosphorylase (PNP), and (ii) the use of 2-fluoroadenosine and 3′-deoxyinosine as substrates of the cross-glycosylation and PNP as a biocatalyst. An efficient method for 3′-deoxyinosine synthesis starting from inosine was developed. However, the very poor solubility of 2ClAde and 2FAde is the limiting factor of the first approach. The second approach enables this problem to be overcome and it appears to be advantageous over the former approach from the viewpoint of practical synthesis of the title nucleosides. The 3-deoxy-α-d-ribofuranose-1-phosphate intermediary formed in the 3′dIno phosphorolysis by PNP was found to be the weak and marginal substrate of E. coli thymidine (TP) and uridine (UP) phosphorylases, respectively. Finally, one-pot cascade transformation of 3-deoxy-d-ribose in cordycepin in the presence of adenine and E. coli ribokinase, phosphopentomutase, and PNP was tested and cordycepin formation in ca. 3.4% yield was proved.

Supporting Information

 
  • References

  • 1 Cunningham KG. Hutchinson SA. Manson W. Spring FS. J. Chem. Soc. 1951; 2299
  • 2 Kaczka EA. Trenner NR. Arison B. Walker RW. Folkers K. Biochem. Biophys. Res. Commun. 1964; 14: 452
  • 3 Kaczka EA. Dulaney EL. Gitterman CO. Woodruff HB. Folkers K. Biochem. Biophys. Res. Commun. 1964; 14: 456
    • 4a Naturally occurring nucleoside and nucleotide antibiotics: Suhadolnik RJ. Prog. Nucleic Acid Res. Mol. Biol. 1979; 22: 193
    • 4b Tuli HS. Sharma AK. Sandhu SS. Kashyap D. Life Sci. 2013; 93: 863
    • 6a Walton E. Nutt RF. Jenkins SR. Holly FW. J. Am. Chem. Soc. 1964; 86: 2952
    • 6b Walton E. Holly FW. Boxer GE. Nutt RF. Jenkins SR. J. Med. Chem. 1965; 8: 659
    • 7a Akhrem AA. Zaitseva GV. Kalinichenko EN. Mikhailopulo IA. Russ. J. Bioorg. Chem. 1976; 2: 1325
    • 7b Yamazaki A. Akiyama M. Kumashiro I. Ikehara M. Chem. Pharm. Bull. 1973; 21: 1143
    • 7c Sivets GG. Kalinichenko EN. Mikhailopulo IA. Lett. Org. Chem. 2006; 3: 402
  • 8 Norman DG. Reese CB. Synthesis 1983; 304
  • 9 Rosowsky A. Solan VC. Sodroski JG. Ruprecht RM. J. Med. Chem. 1989; 32: 1135
    • 10a Rizzo CJ. Dougherty JP. Breslow R. Tetrahedron Lett. 1992; 33: 4129
    • 10b Sheppard TL. Rosenblatt AT. Breslow R. J. Org. Chem. 1994; 59: 7243
  • 11 Kumar A. Khan SI. Manglani A. Khan ZK. Katti SB. Nucleosides Nucleotides 1994; 13: 1049
    • 12a Robins MJ. Mengel R. Jones RA. Fouron Y. J. Am. Chem. Soc. 1976; 98: 8204
    • 12b Hansske F. Robins MJ. Tetrahedron Lett. 1985; 26: 4295
    • 12c Robins MJ. Wilson JS. Madej D. Low NH. Hansske F. Wnuk SF. J. Org. Chem. 1995; 60: 7902
  • 13 Volpini R. Camaioni E. Costanzi S. Vittori S. Cristalli G. Helv. Chim. Acta 1998; 81: 2326
  • 14 Vodnala SK. Lundbäck L. Yeheskieli E. Sjöberg B. Gustavsson A.-L. Svensson R. Olivera GC. Eze AA. de Koning HP. Hammarström LG. О. Rottenberg ME. J. Med. Chem. 2013; 56: 9861 ; and references cited therein
  • 15 Aman S. Anderson DJ. Connolly TJ. Crittal AJ. Ji G. Org. Process Res. Dev. 2000; 4: 601
  • 16 Cui Z. Zhang L. Zhang B. Tetrahedron Lett. 2001; 42: 561 ; and references therein
  • 17 Takamatsu S. Maruyama T. Katayama S. Hirose N. Naito M. Izawa K. J. Org. Chem. 2001; 66: 7469
  • 18 For example: Vodnala SK. Ferella M. Lunden-Miguel H. Bethan E. van Reet N. Amin DN. Öberg B. Andersson B. Kristensson K. Wigcell H. Rottenberg ME. PLOS 2009; 3: e495
    • 19a Chilson OP. Fisher JR. Arch. Biochem. Biophys. 1963; 102: 77
    • 19b Frederiksen S. Arch. Biochem. Biophys. 1966; 113: 383
    • 19c Cory JG. Suhadolnik RJ. Biochemistry 1965; 4: 1729
    • 19d Simon LN. Bauer RJ. Tolman RL. Robins RK. Biochemistry 1970; 9: 573
  • 20 Montgomery JA. Cancer Res. 1982; 42: 3911
  • 21 Huang M. Avery TL. Blakeley RL. Secrist JA. III. Montgomery JA. J. Med. Chem. 1984; 27: 800
    • 22a Barai VN. Zinchenko AI. Eroshevskaya LA. Zhernosek EV. De Clercq E. Mikhailopulo IA. Helv. Chim. Acta 2002; 85: 1893
    • 22b Barai VN. Zinchenko AI. Eroshevskaya LA. Zhernosek EV. Balzarini J. De Clercq E. Mikhailopulo IA. Nucleosides Nucleotides Nucleic Acids 2003; 22: 751
    • 23a Marcuccio SM. Elmes BC. Holan G. Middleton EJ. Nucleosides Nucleotides 1992; 11: 1695
    • 23b Sivets GG. Klennitskaya TV. Zhernosek EV. Mikhailopulo IA. Synthesis 2002; 253
    • 24a Brown DM. Parihar DB. Todd A. Varadarajan S. J. Chem. Soc. 1958; 3028
    • 24b Akhrem AA. Mikhailopulo IA. Zaitseva GV. Abramov AF. J. Carbohyd., Nucleosides, Nucleotides 1977; 4: 43
    • 24c Hollecker L. Choo H. Chong Y. Chu CK. Lostia S. McBrayer TR. Stuyver LJ. Mason JC. Du J. Rachakonda S. Shi J. Schinazi RF. Watanabe KA. Antiviral Chem. Chemother. 2004; 15: 43
  • 25 Esipov RS. Gurevich AI. Chuvikovski DV. Chupova LA. Muravyova TI. Mirosnikov AI. Protein Expression Purif. 2002; 24: 56
  • 26 Fateev IV. Antonov KV. Konstantinova ID. Muravyova TI. Seela F. Esipov RS. Miroshnikov AI. Mikhailopulo IA. Beilstein J. Org. Chem. 2014; 10: 1657
  • 27 Zhou X. Szeker K. Jiao L.-Y. Oestreich M. Mikhailopulo IA. Neubauer P. Adv. Synth. Catal. 2015; 357: 1237
  • 28 Zinchenko AI. Barai VN. Bokut SB. Kvasyuk EI. Mikhailopulo IA. Appl. Microbiol. Biotechnol. 1990; 32: 658
  • 29 Berzin VB. Dorofeeva EV. Leonov VN. Miroshnikov AI. Bioorgan. Khim. (Moscow) 2009; 35: 210; Russ. J. Bioorg. Chem. 2009, 35, 193
  • 30 Miroshnikov AI. Esipov RS. Muravyova ТI. Konstantinova ID. Fateev IV. Mikhailopulo IA. Open Conf. Proc. J. 2010; 1: 98
  • 31 Stepchenko VA. Seela F. Esipov RS. Miroshnikov AI. Sokolov YA. Mikhailopulo IA. Synlett 2012; 23: 1541
  • 32 Mikhailopulo IA. Miroshnikov AI. Acta Naturae 2010; 2: 36 ; http://www.actanaturae.ru/
  • 33 Mikhailopulo IA. Miroshnikov AI. Mendeleev Commun. 2011; 21: 57
  • 34 Mikhailopulo IA. Miroshnikov AI. Biotechnol. Acta 2013; 6: 63