Synlett 2017; 28(16): 2163-2168
DOI: 10.1055/s-0036-1590805
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Cleavage of Unstrained C–C Bonds for the Synthesis of 1-Acyloxy-2,2,6,6-tetramethylpiperidines from Cyclic or Acyclic Ketones

Qijian Jiang
a   College of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. of China
,
Luo Yang
c   College of Chemistry, Xiangtan University, Xiangtan 411105, P. R. of China   Email: wzhou@xtu.edu.cn
,
Wang Zhou  *
a   College of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. of China
b   State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Xue Yuan Road 38, Beijing 100191, P. R. of China
› Author Affiliations
Financial support from National Science Foundation of China (No. 21372188), Hunan Provincial Natural Science Foundation (14JJ6012), and the State Key Laboratory of Natural and Biomimetic Drugs are greatly appreciated.
Further Information

Publication History

Received: 17 April 2017

Accepted after revision: 22 May 2017

Publication Date:
13 July 2017 (online)


Abstract

A copper-catalyzed approach for the synthesis of 1-acyloxy-2,2,6,6-tetramethylpiperidines through the C–C bond cleavage of cyclic or acyclic ketones was developed. In this chemistry, a combination of CuCl2·2H2O, 1,10-phenanthroline monohydrate, and aniline was crucial for the formation of the desired products by the reaction of ketones with TEMPO. This research provides a new strategy for the further transformation of α-aryl cyclic or acyclic ketones.

Supporting Information

 
  • References and Notes

  • 1 Special issue: C–C Bond Activation, Top. Curr. Chem. 2014, 346, 1.
  • 2 Cleavage of Carbon–Carbon Single Bonds by Transition Metals . Murakami M. Chatani N. Wiley-VCH; Weinheim: 2016

    • For selected reviews on cleavage of unstrained C–C bonds, see:
    • 3a Dermenci A. Coe JW. Dong G. Org. Chem. Front. 2014; 1: 567
    • 3b Chen F. Wang T. Jiao N. Chem. Rev. 2014; 114: 8613
    • 3c Liu H. Feng M. Jiang X. Chem. Asian J. 2014; 9: 3360
    • 4a Walter MW. Nat. Prod. Rep. 2002; 19: 278
    • 4b Dugas H. Bioorganic Chemistry: A Biochemical Approach to Enzyme Action . Springer; New York: 1996. 3rd ed.
    • 4c Kamat PV. Chem. Rev. 1993; 93: 267

      For selected recent examples on cleavage of C–C bonds of unstrained ketones or aldehydes, see:
    • 5a Shuai Q. Yang L. Guo X. Baslé O. Li C.-J. J. Am. Chem. Soc. 2010; 132: 12212
    • 5b Lei Z.-Q. Li H. Li Y. Zhang X.-S. Chen K. Wang X. Sun J. Shi Z.-J. Angew. Chem. Int. Ed. 2012; 51: 2690
    • 5c Lei Z.-Q. Pan F. Li H. Li Y. Zhang X.-S. Chen K. Wang X. Li Y.-X. Sun J. Shi Z.-J. J. Am. Chem. Soc. 2015; 137: 5012
    • 5d Xia Y. Lu G. Liu P. Dong G. Nature 2016; 539: 546
    • 5e Morioka T. Nishizawa A. Furukawa T. Tobisu M. Chatani N. J. Am. Chem. Soc. 2017; 139: 1416

      For some recent reviews on metal-catalyzed aerobic oxidation, see:
    • 6a Shi Z. Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 6b Wu W. Jiang H. Acc. Chem. Res. 2012; 45: 1736
    • 6c Campbell AN. Stahl SS. Acc. Chem. Res. 2012; 45: 851
    • 7a Tang C. Jiao N. Angew. Chem. Int. Ed. 2014; 53: 6528
    • 7b Subramanian P. Indu S. Kaliappan KP. Org. Lett. 2014; 16: 6212
  • 8 Zhang L. Bi X. Guan X. Li X. Liu Q. Barry B.-D. Liao P. Angew. Chem. Int. Ed. 2013; 52: 11303
    • 9a He C. Guo S. Huang L. Lei A. J. Am. Chem. Soc. 2010; 132: 8273
    • 9b Tsang AS.-K. Kapat A. Schoenebeck F. J. Am. Chem. Soc. 2016; 138: 518
    • 9c Gu L. Jin C. Liu J. Zhang H. Yuan M. Lia G. Green Chem. 2016; 18: 1201
    • 9d Ma R. He L.-N. Liu A.-H. Song Q.-W. Chem. Commun. (Cambridge) 2016; 52: 2145
    • 10a Zhang C. Feng P. Jiao N. J. Am. Chem. Soc. 2013; 135: 15257
    • 10b Huang X. Li X. Zou M. Song S. Tang C. Yuan Y. Jiao N. J. Am. Chem. Soc. 2014; 136: 14858
    • 11a Fan W. Yang Y. Lei J. Jiang Q. Zhou W. J. Org. Chem. 2015; 80: 8782
    • 11b Zhou W. Fan W. Jiang Q. Liang Y.-F. Jiao N. Org. Lett. 2015; 17: 2542
  • 12 2-{3-Oxo-3-[(2,2,6,6-tetramethylpiperidin-1-yl)oxy]propyl}benzaldehyde (3aa); Typical Procedure A tube equipped with a condenser was successively charged with 2-tetralone (1a, 0.5 mmol, 73.1 mg), TEMPO (2a, 0.25 mmol, 39.1 mg), CuCl2·2 H2O (0.025 mmol, 4.3 mg), 1,10-phenanthroline monohydrate (0.05 mmol, 9.9 mg), aniline (0.025 mmol, 2.3 mg, 2.3 μL), and MeCN (2 mL), and the mixture was stirred at 40 °C under air. When the reaction was complete (TLC), the mixture was cooled to r.t., dried under vacuum, and purified by column chromatography [silica gel, PE–EtOAc (5:1)] to give a solid; yield: 74 mg (93%); mp 56–57 °C. 1H NMR (400 MHz, CDCl3): δ = 10.23 (s, 1 H), 7.81 (d, J =7.6 Hz, 1 H), 7.50 (t, J = 7.4 Hz, 1 H), 7.44–7.36 (m, 2 H), 3.41 (t, J = 7.6 Hz, 2 H), 2.69 (t, J = 7.6 Hz, 2 H), 1.72–1.35 (m, 6 H), 1.09 (s, 6 H), 0.95 (s, 6 H); 13C NMR (100 MHz, CDCl3): δ = 192.7, 172.3, 142.7, 133.8, 133.7, 133.6, 131.5, 127.0, 59.8, 38.8, 34.0, 31.8, 28.2, 20.4, 16.9.
    • 13a Arora PK. Sayre LM. Tetrahedron Lett. 1991; 32: 1007
    • 13b Atlamsani A. Brégeault J.-M. Synthesis 1993; 79
    • 13c Cossy J. Belotti D. Bellosta V. Brocca D. Tetrahedron Lett. 1994; 35: 6089