CC BY-ND-NC 4.0 · SynOpen 2017; 01(01): 0041-0044
DOI: 10.1055/s-0036-1590807
letter
Copyright with the author

A Concise Synthesis of Isocryptolepine by C–C Cross-Coupling Followed by a Tandem C–H Activation and C–N Bond Formation

Ida T. Urdal Helgeland
,
Magne O. Sydnes*
The University of Stavanger Toppforsk program and the research program Bioactive is acknowledged for financial support of the study.
Weitere Informationen

Publikationsverlauf

Received: 02. Juni 2017

Accepted: 06. Juni 2017

Publikationsdatum:
27. Juni 2017 (online)


Abstract

Isocryptolepine (1), a potent antimalarial natural product, was prepared in three steps from 3-bromoquinoline and 2-aminophenylboronic acid hydrochloride. The key transformations were a Suzuki–Miyaura cross-coupling reaction followed by a palladium-initiated intramolecular C–H activation/C–N bond formation between an unprotected amine and an aromatic C–H group. The two key reactions can also be performed in one pot.

Supporting Information

 
  • References and Notes

    • 1a Pousset JL. Martin MT. Jossang A. Bodo A. Phytochemistry 1995; 39: 735
    • 1b Sharaf MH. H. Schiff PL. Tackie JrA. N. Phoebe CH. Johnson JrR. L. Minick D. Andrews CW. Crouch RC. Martin GE. J. Heterocycl. Chem. 1996; 33: 789
    • 2a Aroonkit P. Thongsornkleeb C. Tummatorn J. Karjangsri S. Mungthin M. Ruchirawat S. Eur. J. Med. Chem. 2015; 94: 56
    • 2b Wang N. Wicht KJ. Imai K. Wang M. Ngoc TA. Kiguchi R. Kaiser M. Egan TJ. Inokuchi T. Bioorg. Med. Chem. 2014; 22: 2629
    • 2c Whittell LR. Batty KT. Wong RP. M. Bolitho EM. Fox SA. Davis TM. E. Murray PE. Bioorg. Med. Chem. 2011; 19: 7519
  • 3 World Malaria Report 2015, World Health Organization 2015; http//www.who.int/malaria/publications/world-malaria-report-2015/report/en/ (accessed on April 19, 2017.
  • 4 Drug resistance in malaria, report 2001, Bioland P B, World Health Organization; Malaria Epidemiology Branch, Centre for Disease Control and Prevention Chamblee, GA, USA.
  • 5 Devine SM. MacRaild CA. Norton RS. Scammells PJ. Med. Chem. Commun. 2017; 8: 13
    • 6a Parvatkar PT. Parameswaran PS. Curr. Org. Synth. 2016; 13: 58
    • 6b Parvatkar PT. Parameswaran PS. Tilve SG. Curr. Org. Chem. 2011; 15: 1036
    • 6c Prakash P. Parash T. Tilve SG. Bioactive Heterocycles 2013; 217
    • 7a Timàri G. Soòs T. Hajòs G. Synlett 1997; 1067
    • 7b Murray PE. Mills K. Joules JA. J. Chem. Res. 1998; 377: 1435
    • 7c Jonckers TM. H. Maes BM. U. Lemière GL. F. Rombouts G. Pieters L. Haemers A. Dommisse RA. Synlett 2003; 615
    • 7d Hostyn S. Maes BU. W. Pieters L. Lemère GL. F. Mátyus P. Hajós G. Dommisse RA. Tetrahedron 2005; 61: 1571
    • 7e Miki Y. Kuromatsu M. Miyatake H. Hamamoto H. Tetrahedron Lett. 2007; 48: 9093
    • 7f Bogányi B. Kámán J. Tetrahedron 2013; 69: 9512
  • 8 Dhanabal T. Sangeetha R. Mohan PS. Tetrahedron Lett. 2005; 46: 4509
    • 9a Kumar RN. Suresh T. Mohan PS. Tetrahedron Lett. 2002; 43: 3327
    • 9b Dhanabal T. Sangeetha R. Mohan PS. Tetrahedron 2006; 62: 6258
    • 9c Pitchai P. Mohan PS. Gengan RM. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2009; 48: 692
    • 10a Agarwal PK. Sawant D. Sharma S. Kundu B. Eur. J. Org. Chem. 2009; 292
    • 10b Hingane DG. Kusurkar RS. Tetrahedron Lett. 2011; 52: 3686
    • 11a Fresneda PM. Molina P. Delgado S. Tetrahedron Lett. 1999; 40: 7275
    • 11b Hayashi K. Choshi T. Chikaraishi K. Oda A. Yoshinaga R. Hatae N. Ishikura M. Hibino S. Tetrahedron 2012; 68: 4274
    • 11c Kraus GA. Guo H. Tetrahedron Lett. 2010; 51: 4137
    • 11d Fresneda PM. Molina P. Delgado S. Tetrahedron 2001; 57: 6197
  • 12 Aksenov AV. Aksenov DA. Orazova NA. Aksenov NA. Griaznov GD. De Carvalho A. Kiss R. Mathieu V. Kornienko A. Rubin M. J. Org. Chem. 2017; 82: 3011
    • 13a Tsang WC. P. Zheng N. Buchwald SL. J. Am. Chem. Soc. 2005; 127: 14560
    • 13b Tsang WC. P. Munday RH. Brasche G. Zheng N. Buchwald SL. J. Org. Chem. 2008; 73: 7603
  • 14 Bjørsvik HR. Elumalai V. Eur. J. Org. Chem. 2016; 5474
  • 15 Suzuki C. Hirano K. Satoh T. Miura M. Org. Lett. 2015; 17: 1597
    • 16a Choi S. Chatterjee T. Choi WJ. You Y. Cho EJ. ACS Catal. 2015; 5: 4796
    • 16b Takamatsu K. Hirano K. Satoh T. Miura M. Org. Lett. 2014; 16: 2892
    • 16c Jordan-Hore JA. Johansson CC. C. Gulias M. Beck EM. Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 16184
  • 17 Miyaura N. Suzuki A. Chem. Rev. 1995; 95: 2457
  • 18 (Quinolin-3-yl)aniline (6): 3-Bromoquinoline (4; 0.39 mL, 2.9 mmol), 2-aminophenylboronic acid hydrochloride (5; 500 mg, 2.9 mmol) and potassium carbonate (1.195 g, 8.6 mmol) were dissolved in EtOH–H2O (5:1, 1.2 mL) under a nitrogen atmosphere. PdCl2(dppf) (105 mg, 0.14 mmol) was added and the reaction mixture was stirred at 60 °C overnight. The reaction mixture was then allowed to cool to ambient temperature and the volatiles were removed under reduced pressure. Purification of the concentrate by silica gel column chromatography (PE–EtOAc, 1:1 v/v) gave compound 6 (R f = 0.16 (PE–EtOAc 75:25 v/v)) as a pale-yellow solid (507 mg, 80%); mp 130–132 °C (lit. ref. 25 119–120 °C). IR (NaCl): 3438, 3331, 3208, 3061, 1619, 1575, 1497, 1452 cm–1. 1H NMR (400 MHz, CDCl3): δ = 9.04 (d, J = 2.2 Hz, 1 H,), 8.27 (d, J = 2.1 Hz, 1 H), 8.16 (d, J = 8.5 Hz, 1 H), 7.86 (d, J = 8.1 Hz, 1 H), 7.75 (ddd, J = 1.4, 6.9, 8.4 Hz, 1 H), 7.61–7.57 (m, 1 H), 7.26–7.22 (m, 2 H), 6.91 (dt, J = 1.0, 7.5 Hz, 1 H), 6.84 (d, J = 7.9 Hz, 1 H), 3.79 (br s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 151.4, 147.1, 143.9, 135.3, 132.3, 130.7, 129.4, 129.3, 129.2, 127.8, 127.7, 126.9.123.6, 119.0, 115.8 (in agreement with NMR data reported in ref. 26). HRMS (ESI): m/z [M + H+] calcd. for C15H13N2 +: 221.1079; found: 221.1073.
  • 19 H-Indolo[3,2-c]quinolone (7): 2-(Quinolin-3-yl)aniline (6; 60 mg, 0.27 mmol) was dissolved in acetic acid (1 mL) and added to a premixed solution of PdCl2(dppf) (40 mg, 0.054 mmol), IMes (4.1 mg, 0.013 mmol), H2O2 (35 wt%, 0.065 mL, 0.08 mmol) and acetic acid (2 mL). The reaction mixture was introduced into a sealed reactor tube, which was placed in the cavity of a microwave oven for 10 min at 118 °C. The reaction mixture was then transferred to a 25 mL round-bottom flask with the aid of EtOAc and the volatiles were removed under reduced pressure. The resulting crude product was then purified by silica gel column chromatography (CH2Cl2–EtOAc, 8:2 → 6:4 v/v) to give compound 7 [R f = 0.25 (CH2Cl2–EtOAc, 1:1 v/v)] as an off-white solid (37 mg, 62% ) along with recovered starting material 6 (9 mg, 15%).
  • 20 Hayashi K. Choshi T. Chikaraishi K. Oda A. Yoshinaga R. Hatae N. Ishikura M. Hibino S. Tetrahedron 2012; 68: 4274
  • 21 Tummatorn J. Thongsornkleeb C. Ruchirawat S. Tetrahedron 2012; 68: 4732
  • 23 Sydnes MO. Curr. Green Chem. 2014; 1: 216
  • 24 H-Indolo[3,2-c]quinolone (7) one-pot reaction:3-Bromoquinoline (4; 0.04 mL, 0.28 mmol), 2-aminophenylboronic acid hydrochloride (5; 50 mg, 0.28 mmol), potassium carbonate (119 mg, 0.86 mmol) and PdCl2(dppf) (20.4 mg, 0.028 mmol) were dissolved in EtOH–H2O (5:1, 1.2 mL). The reaction mixture was introduced into in a sealed reactor tube, which was placed in the cavity of a microwave oven for 4 h at 60 °C. Formation of 2-(quinolin-3-yl)aniline (6) was monitored by TLC. This was then followed by addition of acetic acid (4 mL), PdCl2(dppf) (20.4 mg, 0.028 mmol), IMes (4.3 mg, 0.014 mmol), and H2O2 (35 wt%, 0.065 mL, 0.08 mmol). The reaction mixture was introduced into a sealed reactor tube, which was placed in the cavity of a microwave oven for 18 min at 118 °C. The crude reaction mixture was then transferred to a 25 mL round-bottom flask with the aid of EtOAc and the volatiles were removed under reduced pressure. The resulting crude mixture was purified by silica gel column chromatography (CH2Cl2–EtOAc 8:2 → 6:4 v/v) to give compound 7 [R f = 0.25 (CH2Cl2–EtOAc, 1:1 v/v)] as an off-white solid (19 mg, 32% ) along with compound 6 (30 mg, 48%). Mp 340–341 °C (lit. ref. 20 333–334 °C). IR (NaCl): 3060, 2958, 2854, 1682, 1582, 1515, 1493 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 12.71 (br s, 1 H), 9.59 (s, 1 H), 8.52 (dd, J = 1.1, 7.9 Hz, 1 H), 8.32 (d, J = 7.9 Hz, 1 H), 8.13 (dd, J = 1.1, 8.0 Hz, 1 H), 7.77–7.67 (m, 3 H), 7.52–7.48 (m, 1 H), 7.36–7.33 (m, 1 H). 13C NMR (100 MHz, DMSO-d 6): δ = 145.4, 144.8, 139.7, 138.7, 129.4, 128.0, 125.7, 125.5, 122.1, 121.8, 120.6, 120.1, 117.1, 114.3, 111.8 (in agreement with NMR data reported in ref. 10a). HRMS (ESI); m/z [M + H+] calcd. for C15H11N2 +: 219.0922; found: 219.0925.
  • 25 Isocryptolepine (1): Compound 7 (70 mg, 0.32 mmol) was treated with methyl iodide (4.0 mL, 0.064 mol) in refluxing toluene (8 mL) for 3 h (see ref. 20). The volatiles were then removed under reduced pressure and the concentrate was purified by silica column chromatography (CHCl3–MeOH, 19:1 → 18:2 v/v) to give the hydroiodide salt of isocryptolepine. To obtain isocryptolepine as the free base, its hydroiodide salt was dissolved in CH2Cl2 (30 mL), aqueous ammonia (25%, 20 mL) was added, and the reaction mixture was stirred at ambient temperature for 10 min. The organic layer was separated and the aqueous layer was extracted with CH2Cl2 (2 × 10 mL). The combined organic layers were washed with brine, dried (MgSO4), filtered and concentrated in vacuo to give isocryptolepine (1) [R f = 0.23 (CH2Cl2–MeOH, 90:10 v/v)] as a yellow solid (56 mg, 76%); mp 185–187 °C (lit. ref. 18 191–193 °C). IR (NaCl): 3047, 2922, 2852, 1637, 1596, 1486, 1451 cm–1. 1H NMR (400 MHz, DMSO-d6): δ = 9.40 (s, 1 H), 8.77 (dd, J = 1.4, 8.1 Hz, 1 H), 8.13–8.11 (m, 1 H), 8.04 (d, J= 8.5 Hz, 1 H), 7.83 (ddd, J = 1.6, 7.1, 8.7 Hz, 1 H), 7.80–7.78 (m, 1 H), 7.72–7.68 (m, 1 H), 7.42 (ddd, J = 1.2, 7.1, 8.2 Hz, 1 H), 7.25–7.21 (m, 1 H), 4.26 (s, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 155.1, 153.1, 138.7, 136.0, 129.7, 126.2, 125.9, 125.6, 124.4, 121.6, 120.2, 120.0, 118.9, 118.0, 116.7, 42.6 (in agreement with NMR data reported in ref. 18). HRMS (ESI): m/z [M + H+] calcd. for C16H13N2 +: 233.1079; found: 233.1080.
  • 26 Vecchione MK. Sun AX. Seidel D. Chem. Sci. 2011; 2: 2178