Synlett 2017; 28(16): 2179-2183
DOI: 10.1055/s-0036-1590816
letter
© Georg Thieme Verlag Stuttgart · New York

Superacid-Mediated Intramolecular Cyclization/Condensation: Facile One-Pot Synthesis of Spirotetracyclic Indanones and ­Indenes

Bokka Venkat Ramulu
Indian Institute of Technology Hyderabad, Kandi-502 285, Sangareddy District, Telangana, India   Email: gvsatya@iith.ac.in
,
Devarapalli Ravi Kumar
Indian Institute of Technology Hyderabad, Kandi-502 285, Sangareddy District, Telangana, India   Email: gvsatya@iith.ac.in
,
Gedu Satyanarayana*
Indian Institute of Technology Hyderabad, Kandi-502 285, Sangareddy District, Telangana, India   Email: gvsatya@iith.ac.in
› Author Affiliations
We are grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for financial support [No. 02(0262)/16/EMR-II].
Further Information

Publication History

Received: 03 May 2017

Accepted after revision: 05 June 2017

Publication Date:
11 July 2017 (online)


Abstract

A facile, superacid-promoted, domino, one-pot synthesis of novel spirotetracyclic indanones through intramolecular Friedel–Crafts acylation/alkylation of α,β-unsaturated cinnamic acid esters is presented. Interestingly, when the β-aryl group contained electron-withdrawing substituents such as fluoro, chloro, or bromo, the reaction took a different mechanistic path and afforded arylindenes as the end products.

Supporting Information

 
  • References and Notes

    • 1a Babu TH. Joseph AA. Muralidharan D. Perumal PT. Tetrahedron Lett. 2010; 51: 994
    • 1b Pal S. Khan MN. Karamthulla S. Abbas SJ. Choudhury LH. Tetrahedron Lett. 2013; 54: 5434
  • 2 Watanabe N. Ikeno A. Minato H. Nakagawa H. Kohayakawa C. Tsuji JI. J. Med. Chem. 2003; 46: 3961
  • 3 Moree WJ. Li BF. Zamani-Kord S. Yu J. Coon T. Huang C. Marinkovic D. Tucci FC. Malany S. Bradbury MJ. Hernandez LM. Wen J. Wang H. Hoare SR. J. Petroski RE. Jalali K. Yang C. Sacaan A. Madan A. Crowe PD. Beaton G. Bioorg. Med. Chem. Lett. 2010; 20: 5874
  • 4 Li C. Guo F. Xu K. Zhang S. Hu Y. Zha Z. Wang Z. Org. Lett. 2014; 16: 3192

    • For monographs on the Friedel–Crafts acylation reaction, see:
    • 5a Heaney H. In Comprehensive Organic Synthesis . Vol. 2. Trost BM. Fleming I. Pergamon; Oxford: 1991: 733
    • 5b Friedel–Crafts and Related Reactions . Vol. 1. Olah GA. Wiley; New York: 1963: 1
    • 5c Olah GA. Klumpp DA. Superelectrophiles and Their Chemistry . Wiley; Hoboken: 2008

      For reviews, see:
    • 6a Heaney H. In Comprehensive Organic Synthesis . Vol. 2. Trost BM. Fleming I. Pergamon; Oxford: 1991: 753
    • 6b Kobayashi S. Sugiura M. Kitagawa H. Lam WW. L. Chem. Rev. 2002; 102: 2227
    • 6c Poulsen TB. Jørgensen KA. Chem. Rev. 2008; 108: 2903
    • 6d Sartori G. Maggi R. Chem. Rev. 2006; 106: 1077
    • 6e Rether C. Sicking W. Boese R. Schmuck C. Beilstein J. Org. Chem. 2010; 6: 3
    • 6f Shi M. Lu J.-M. Wei Y. Shao L.-X. Acc. Chem. Res. 2012; 45: 641
    • 6g Corma A. García H. Chem. Rev. 2003; 103: 4307
    • 6h Gore PH. Chem. Rev. 1955; 55: 229
    • 6i Harvey RG. Lim K. Dai Q. J. Org. Chem. 2004; 69: 1372
    • 7a Kumar K. Sai S. Tokarz MJ. Malunchuk AP. Zheng C. Gilbert TM. Klumpp DA. J. Am. Chem. Soc. 2008; 130: 14388
    • 7b Zhang Y. Sheets MR. Raja EK. Boblak KN. Klumpp DA. J. Am. Chem. Soc. 2011; 133: 8467
    • 7c Evans DA. Fandrick KR. Org. Lett. 2006; 8: 2249
    • 7d Rose MD. Cassidy MP. Rashatasakhon P. Padwa A. J. Org. Chem. 2007; 72: 538
    • 7e Wu Y.-C. Liu L. Liu Y.-L. Wang D. Chen Y.-J. J. Org. Chem. 2007; 72: 9383
    • 7f Reddy AG. K. Satyanarayana G. J. Org. Chem. 2016; 81: 12212
  • 8 Brewster JH. Prudence RT. J. Am. Chem. Soc. 1973; 95: 1217
    • 9a Matsuda T. Suda Y. Takahashi A. Chem. Commun. 2012; 48: 2988
    • 9b Hayashi T. Inoue K. Taniguchi N. Ogasawara M. J. Am. Chem. Soc. 2001; 123: 9918
    • 9c Miura T. Sasaki T. Nakazawa H. Murakami M. J. Am. Chem. Soc. 2005; 127: 1390
    • 9d Shintani R. Isobe S. Takeda M. Hayashi T. Angew. Chem. Int. Ed. 2010; 49: 3795
    • 9e Matsuda T. Yasuoka S. Watanuki S. Fukuhara K. Synlett 2015; 26: 1233
  • 10 Takahashi T. Tsutsui H. Tamura M. Kitagaki S. Nakajima M. Hashimoto S. Chem. Commun. 2001; 1604
  • 11 Boblak KN. Klumpp DA. J. Org. Chem. 2014; 79: 5852
    • 12a Sun L. Zhu Y. Wang J. Lu P. Wang Y. Org. Lett. 2015; 17: 242
    • 12b Mothe SR. Novianti ML. Ayers BJ. Chan PW. H. Org. Lett. 2014; 16: 4110
  • 13 Schmidt J. Stark CB. W. Org. Lett. 2012; 14: 4042
    • 14a England DB. Merey G. Padwa A. Org. Lett. 2007; 9: 3805
    • 14b Beckett AH. Daisley RW. Walker J. Tetrahedron 1968; 24: 6093
  • 15 Reddy BV. S. Medaboina D. Sridhar B. J. Org. Chem. 2015; 80: 653
  • 16 Wang J. Zhu H.-T. Li Y.-X. Wang L.-J. Qiu Y.-F. Qiu Z.-H. Zhong M. Liu X.-Y. Liang Y.-M. Org. Lett. 2014; 16: 2236
  • 18 Niharika P. Ramulu BV. Satyanarayana G. Org. Biomol. Chem. 2014; 12: 4347
  • 19 Ramulu BV. Mahendar L. Satyanarayana G. Asian J. Org. Chem. 2016; 5: 207
    • 20a Saito S. Sato Y. Ohwada T. Shudo K. J. Am. Chem. Soc. 1994; 116: 2312
    • 20b Xu S. Chen R. Fu Z. Zhou Q. Zhang Y. Wang J. ACS Catal. 2017; 7: 1993
    • 20c Kheira H. Li P. Xu J. J. Mol. Catal A: Chem. 2014; 391: 168
    • 20d Nifant’ev EI. Sitnikov AA. Andriukhova NV. Laishevtsev IP. Luzikov YN. Tetrahedron Lett. 2002; 43: 3213
    • 21a Jeffery T. Tetrahedron Lett. 1991; 32: 2121
    • 21b Jeffery T. Tetrahedron Lett. 1990; 31: 6641
    • 21c Jeffery T. Chem. Commun. 1991; 324
  • 22 Spirotetracyclic indanones 9; General Procedure An oven-dried Schlenk tube was charged with the appropriate β-aryl α,β-unsaturated ester 3ai (0.25 mmol) and DCE (2 mL) under N2. TfOH (0.1 mL, 1.5 mmol) was then added and the mixture was stirred at 50 °C for 30–36 h until the reaction was complete (TLC). The reaction was quenched with aq. NaHCO3, and the mixture was extracted with CH2Cl2 (3 × 20 mL). The organic layers were combined, washed with sat. brine, dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, PE–EtOAc) to give the appropriate spirotetracyclic indanone 9ai (76–90%). 6′-Methyl-2′,3′-dihydro-1,1′-spirobi[inden]-3(2H)-one (9b) Brown viscous liquid; yield: 54 mg (87%); TLC: Rf (3b) = 0.50, (9b) = 0.60 (PE–EtOAc, 96:4, UV detection). IR (MIR-ATR): 2922, 2851, 1710, 1601, 1461, 1287, 1236, 816, 763 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.79 (d, J = 7.8 Hz, 1 H, ArH), 7.57 (ddd, J = 7.3, 7.3, and 1.0 Hz, 1 H, ArH), 7.41 (ddd, J = 7.3, 7.3, and 1.0 Hz, 1 H, ArH), 7.27 (d, J = 7.8 Hz, 1 H, ArH), 7.21 (d, J = 7.8 Hz, 1 H, ArH), 7.08 (d, J = 7.8 Hz, 1 H, ArH), 6.57 (s, 1 H, ArH), 3.19–3.00 (m, 2 H, CH2), 2.94 (d, J = 18.6 Hz, 1 H, CH aHb), 2.87 (d, J = 18.6 Hz, 1 H, CHa H b), 2.55–2.44 (m, 1 H, CH2), 2.40–2.30 (m, 1 H, CH2), 2.22 (s, 3 H, ArCH3). 13C NMR (100 MHz, CDCl3): δ = 205.9 (s, C=O), 161.6 (s, ArC), 149.0 (s, ArC), 140.2 (s, ArC), 136.9 (d, ArC), 136.0 (s, ArC), 135.4 (d, ArCH), 128.1 (d, ArCH), 127.8 (d, ArCH), 125.1 (d, ArCH), 124.3 (d, ArCH), 123.3 (d, ArCH), 123.0 (d, ArCH), 54.4 [s, C(CH2)2], 52.4 (t, CH2), 42.9 (t, CH2), 30.8 (t, CH2), 21.2 (q, ArCH3). HRMS (APCI+): m/z [M + H]+ calcd for C18H17O+: 249.1274; found: 249.1279.
  • 23 Indenes 10; General Procedure An oven-dried Schlenk tube was charged with the appropriate β-aryl α,β-unsaturated ester 3jo (0.25 mmol) and DCE (2 mL) under N2. TfOH (0.1 mL, 1.5 mmol) was then added and the mixture was stirred at 50 °C for 12 h until the reaction was complete (TLC). The reaction was quenched with aq. NaHCO3 and the mixture was extracted with CH2Cl2 (3 × 20 mL). The organic layers were combined, washed with sat. brine, dried (Na2SO4), filtered, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, PE–EtOAc) to give the appropriate indene 10jo (68–78%). 3-(4-Chlorophenyl)-5-methyl-1H-indene (10n) Brown viscous liquid; yield: 47 mg (78%). TLC: Rf (3n) = 0.45, (10n) = 0.60 (PE–EtOAc, 97:3, UV detection). IR (MIR-ATR): 2920, 1726, 1613, 1487, 1393, 1288, 1093, 1014, 885, 803, 731 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.57 (dd, J = 8.3 and 2.0 Hz, 2 H, ArH), 7.47 (dd, J = 8.3 and 2.0 Hz, 3 H, ArH), 7.38 (s, 1 H, ArH), 7.14 (d, J = 8.3 Hz, 1 H, ArH), 6.58 (t, J = 2.0 Hz, 1 H, CH=C), 3.49 (d, J = 2.0 Hz, 2 H, CH2), 2.45 (s, 3 H, ArCH3). 13C NMR (100 MHz, CDCl3): δ = 144.0 (s, ArC), 143.7 (s, ArC), 141.7 (s, ArC), 135.8 (d, ArC), 134.6 (s, ArC), 133.3 (s, ArC), 131.7 (d, ArCH), 129.0 (d, 2 C, ArCH), 128.7 (d, 2 C, ArCH), 125.9 (d, ArCH), 123.9 (d, ArCH), 120.7 (d, CH=C), 37.8 (t, CH2), 21.6 (q, ArCH3). HRMS (APCI+): m/z [M + H]+ calcd for C16H14Cl+: 241.0779; found: 241.0787.